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We introduce ThalamusDB, a novel approximate query processing system that processes complex SQL queries

on multi-modal data. ThalamusDB supports SQL queries integrating natural language predicates on visual,

audio, and text data. To answer such queries, ThalamusDB exploits a collection of zero-shot models in

combination with relational processing. ThalamusDB utilizes deterministic approximate query processing,

harnessing the relative efficiency of relational processing to mitigate the computational demands of machine

learning inference. For evaluating a natural language predicate, ThalamusDB requests a small number of

labels from users. User can specify their preferences on the performance objective regarding the three relevant

metrics: approximation error, computation time, and labeling overheads. The ThalamusDB query optimizer

chooses optimized plans according to user preferences, prioritizing data processing and requested labels to

maximize impact. Experiments with several real-world data sets, taken from Craigslist, YouTube, and Netflix,

show that ThalamusDB achieves an average speedup of 35.0× over MindsDB, an exact processing baseline,

and outperforms ABAE, a sampling-based method, in 78.9% of cases.
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1 INTRODUCTION
Prior work has introduced systems that integrate machine learning with databases, such as

MindsDB [30] and EvaDB [17]. Using large neural models, these systems enable users to handle

multi-modal data within a unified framework. In this context, the primary challenge in processing

queries on multi-modal data is the computational cost associated with model inference, as shown

in Figure 1. Processing large amounts of multi-modal data is very expensive and becomes the

dominant factor in query processing. This processing overhead underscores the need for a more

efficient solution. Hence, we introduce ThalamusDB, an approximate query processing (AQP)

system designed for complex queries on multi-modal data. The code of ThalamusDB is available at

https://github.com/saehanjo/thalamusdb.

ThalamusDB supports retrieval and aggregation queries (with joins) that integrate natural

language predicates onmulti-modal data. It supports an extended, relational data model, introducing

specialized column types to integrate picture and audio data. Queries are formulated using an SQL

dialect that supports predicates, formulated in natural language on text, picture, or audio data
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Fig. 1. Runtime comparison of predicate evaluation on 10,000 items between an equality predicate
on relational data and natural language predicates on unstructured data.

Fig. 2. Overview of ThalamusDB.

columns. For predicate evaluation, ThalamusDB utilizes zero-shot classifiers, like OpenAI CLIP [36]

and Sentence-BERT [37], which enables classification of various data types merely from a natural

language description of relevant classes.

ThalamusDB employs deterministic AQP techniques for processing multi-modal data. Thala-

musDB approximates by applying models to a subset of data and asking users to label a small

number of items. Instead of randomly sampling data, ThalamusDB carefully selects which subsets

of data to process and label. ThalamusDB relies on a scenario-specific optimizer to determine the

optimal data subsets for maximal result quality. Users submit SQL queries with natural language

predicates on multi-modal data. They specify their preferred tradeoffs among three relevant met-

rics: result approximation error, labeling overheads, and computational overheads. Once query

processing begins, users are asked to label a small number of multi-modal data items, determining

whether they satisfy the predicate or not. Using the provided labels and processed data subsets,

ThalamusDB generates bounds for query aggregates, guaranteed to contain the precise value.

Sampling-based approximation is the most classical approach to trade result precision for process-

ing overheads [12]. However, sampling has several limitations in our problem setting. Generating

offline data samples through methods like stratified sampling is challenging due to the unrestricted

nature of natural language predicates. Furthermore, sampling is not a good match for reducing

the number of required labels when identifying the similarity threshold. Instead, a more efficient

approach is to systematically select items with similarity scores that help refine the threshold range

the most. At the same time, sampling poses drawbacks for aggregates like maxima and minima [34].

In contrast, ThalamusDB relies on deterministic AQP for approximation. The term “determinis-

tic” indicates that the result bounds always guarantee to contain the true value, as opposed to

confidence bounds. Prior work on deterministic AQP [15, 34] demonstrates that processing a data

subset can yield deterministic bounds on query results. ThalamusDB capitalizes on the observation

that processing different data subsets may result in varying degrees of improvement in result
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precision. ThalamusDB is unique in its focus on multi-modal data. Hence, ThalamusDB leverages

the relatively cheap relational processing (compared to machine learning inference) to carefully

select row subsets expected to minimize approximation error.

ThalamusDB relies on a multi-objective optimizer to explore alternative processing plans in the

plan space (i.e., choosing which data subsets to process and to label for natural language predicates).

Hence, the optimizer is equipped with scenario-specific error and cost models, estimating sizes

of intermediate results as well as processing overheads, the required number of labels, as well as

the approximation error after executing a series of processing steps. Classifiers associated with

different natural language predicates may vary significantly in per-invocation costs (e.g., due to the

type of data and the model size as shown in Figure 1). At the same time, predicate selectivity differs,

making certain evaluation orders preferable over others. Finally, prioritizing predicate evaluations

and item labeling (both can help to increase approximation precision) requires considering data

and query properties. The scenario-specific query optimizer is able to make appropriate choices for

all of the aforementioned tuning decisions. Given an optimal plan, ThalamusDB applies classifiers

on a carefully selected data subset, processes the remaining part of the input query (not involving

natural language predicates), requests manual labels from the user, and finally presents the final

query result to the user.

It is crucial to distinguish different types of approximation errors that arise in the context of

ThalamusDB, as well as associated guarantees. First, ThalamusDB uses neural models to process

multimodal data. Such models are inherently imperfect and may make mistakes. However, improv-

ing the accuracy of neutral models is an orthogonal problem to the one addressed in this work

and outside of our scope. Instead, ThalamusDB focuses on minimizing errors caused by processing

a subset of the data, instead of the full data set. Assuming error-free neural models (with the

understanding that this assumption is, of course, simplifying), ThalamusDB produces deterministic

bounds that are guaranteed to contain values obtained by processing the full data set. Lastly, we

need to distinguish the approximation error in execution from the approximation error in optimization.
ThalamusDB uses models to estimate error (and cost) before processing specific data subsets for

optimization. As usual in query optimization, these models cannot guarantee deterministic bounds

or the selection of optimal processing plans. However, as the optimizer error model is only used to
select data subsets, not to produce query results, the lack of guarantees of the optimizer model does

not affect guarantees on the query result.

In our experiments, we evaluate ThalamusDB on various types of queries on three real-world

data sets from Craigslist, YouTube, and Netflix. These benchmarks consists of queries on different

data types, including pictures, audios, and texts, as well as queries on combinations of different data

types. The performance of ThalamusDB depends on the data distribution, and pathological cases are,

in principle, possible (see Example 3 in Section 4.3). However, our experiments demonstrate that it

performswell on real-world datasets.We compare ThalamusDB against multiple baselines, MindsDB

and ABAE, showing significant improvements. In summary, the original scientific contributions in

this paper are the following:

• We present ThalamusDB, a deterministic approximate query processing system for answering

complex queries with natural language predicates on multi-modal data.

• We outline processingmethods that reduce the processing overheads of running queries involving

machine learning inference on large data sets.

• We introduce a multi-objective optimizer that enables users to trade between different cost and

error metrics.

• We evaluate ThalamusDB experimentally on several real-world data sets and compare to various

baselines, including MindsDB and ABAE.
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CREATE TABLE Ads (AdID int PRIMARY KEY,
Created date, AdText text, Price int);

CREATE TABLE Pics (FilePath PICTURE PRIMARY KEY,
AdID int, FOREIGN KEY (AdID) REFERENCES Ads(AdID));

Fig. 3. Schema of running example database.

SELECT Min(A.Price)
FROM Ads A, Pics P
WHERE Created > DATE'2022-01-01'

AND P.AdID = A.AdID
AND NL(P.FilePath,
'Shows wooden chair with blue cushions')

Fig. 4. Query on example database, calculating minimal price of ads offering chairs after January
1st 2022.

2 SYSTEM OVERVIEW
Figure 2 shows an overview of the ThalamusDB system. ThalamusDB processes SQL queries with

natural language predicates on data sets, integrating structured data, pictures, audio data, and

text. Database schemata are defined using a slightly extended version of SQL DDL commands,

integrating dedicated data types to reference pictures and audio files.

ThalamusDB relies on two types of external components for data processing: a relational database

management system (DBMS) and a repository with neural models for multi-modal data analysis.

The relational DBMS is used for managing the database schema and for structured data processing.

Internally, ThalamusDB represents picture and audio data columns as text columns in the DBMS,

containing paths to files in a directory storing its non-relational data. Neural models are used to

evaluate natural language predicates that appear in the input queries. Currently, ThalamusDB uses

CLIP [36] for processing images, the model by Mei et al. [29] and CLAP [9] for processing audio

data, and Sentence-BERT [37] as well as BART [26] for processing natural language predicates on

text. Models are easily exchangeable for each data type with little effort. Internally, ThalamusDB

decomposes incoming DDL instructions and queries into parts referencing multi-modal data (which

are processed separately) and standard SQL (which are processed by the relational DBMS). The

following example illustrates how users can use the system to query on multi-modal data.

Example 1. Alice is furnishing her apartment and looking for a wooden chair with blue cushions
on Craigslist. To get a sense of the price range, she aims to find the lowest price for offers over recent
months. However, many listings lack color or material details in their text descriptions, requiring her
to analyze associated pictures. Lacking the time to go through a large number of pictures, Alice decides
to try out ThalamusDB, a novel system for multi-modal data analysis.
Alice scrapes data from Craigslist and inserts it into ThalamusDB in relational format, using the

schema in Figure 3. This schema uses the non-standard “PICTURE” data type, indicating that models
for image analysis can be used on associated files. Now, Alice can formulate her request using the
query from Figure 4. This query uses the “NL” keyword to enable natural language predicates on
unstructured (i.e., picture, audio, or text) columns. ThalamusDB evaluates such predicates using large
neural networks to calculate similarity scores between text and data. Predicates are considered satisfied
once the similarity reaches a certain threshold. The best threshold varies across predicates and data
sets, hence ThalamusDB asks users to label a limited number of samples for calibration. For instance,
Figure 2 shows labeling requests for pictures as well as text. Furthermore, users can configure the
system for different tradeoffs between the three metrics: approximation error, labeling overheads, and
computational overheads. The user interface for performance objective (shown in Figure 2) allows
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specifying constraints on one metric and weights on the remaining two1. To save time, Alice limits the
number of labeling requests to five. ThalamusDB chooses an optimal processing plan, analyzes a subset
of pictures, requests labels for up to five pictures, and finally produces an approximate query result.

For each input query, ThalamusDB executes the following stages.

Initialization. ThalamusDB prepares the relational database for query processing by creating

temporary tables, one for each natural language predicate that appears in the query. Each table

contains two columns, representing the item ID as well as a similarity score, capturing the similarity

between predicate text and item (i.e., a picture, audio file, or text). After initialization, similarity

scores are unknown, represented by SQL NULL values.

Pre-Processing.Next, ThalamusDB performs a pre-processing stage in which, for each predicate,

it calculates similarity values between predicate text and items using multimodal models, for small

samples of items. At the same time, for each predicate, it requests labels from users for a small

number of items (three). This allows ThalamusDB to narrow down the threshold on similarity

starting from which the predicate is considered satisfied. The purpose of pre-processing is to

collect query-specific statistics, including natural language predicate selectivity (which cannot be

estimated, e.g., based on histograms), that are helpful for query optimization.

Query Optimization. Then, ThalamusDB invokes a scenario-specific query optimizer to gener-

ate an optimized execution plan. Users may specify constraints (upper bounds) or weights on any

of the three cost metrics, namely computation cost, number of requested labels, and approximation

error. These performance objectives are taken into account by the optimizer. The resulting execution

plan minimizes weighted cost among plans respecting the constraints.

Query Execution. The execution plan is forwarded to the execution engine which executes

a sequence of actions. ThalamusDB supports two types of execution actions: prioritized data

processing and labeling requests. First, prioritized data processing involves applying multi-modal

models to calculate similarity scores for a specific predicate and a subset of items. Those items

are not selected randomly but can be prioritized according to values in other columns of the same

table (e.g., referring to Example 1, we could select pictures of Craigslist items in ascending order

of price). The resulting similarity scores are stored in the temporary tables, created during the

initialization phase. Second, labeling requests ask users to determine whether specific natural

language predicates apply to specific items (e.g., asking Alice to verify whether a specific picture

shows a wooden chair). ThalamusDB does not perform (costly) training on large models. Instead, it

uses labels to narrow down the threshold on similarity scores, starting from which items with a

higher score are considered satisfied. After calculating similarity values for a subset of predicates

and items, using multi-modal models, as well as narrowing down thresholds on similarity values

via user labels, the engine executes SQL queries to calculate lower and upper bounds on query

result aggregates respectively.

Post-Processing and Early Termination. The optimizer selects execution plans based on

preprocessing-based statistics, using (as it is typical in the domain of query optimization) simplify-

ing assumptions to estimate execution overheads and the approximation error, i.e., the distance

between lower and upper bounds on query aggregates. Hence, actual execution overheads and

the resulting distance between bounds may deviate from estimates. ThalamusDB uses additional

mechanisms to ensure that user-specified constraints are respected. More precisely, the execution

engine interrupts execution, whenever aggregate computation overheads exceed the user constraint.

If the approximation error does not satisfy constraints specified by the user, after plan execution,

1
Allowing users to specify constraints on more than one metric may lead to situations where the system is unable to satisfy

all constraints. This cannot happen if constraints are placed on at most one metric. E.g., any approximation error constraint

can be met when processing enough data and requesting enough labels.
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ThalamusDB performs post-processing to reduce the error further. In post-processing, ThalamusDB

greedily selects actions that maximize the expected error reduction. Each action either requests

labels from the user for a specific predicate and item or calculates similarity scores for a specific

predicate and a subset of items. Post-processing stops once the distance between bounds becomes

small enough such that the user-specified error constraints are met.

3 FORMAL MODEL
ThalamusDB supports the following types of queries and schemata.

Definition 1 (Multi-Modal Schema). ThalamusDB supports star schemata using standard SQL

DDL (data definition language) commands with extensions for multi-modal data: ThalamusDB

supports two additional data types, PICTURE and AUDIO. Corresponding columns contain paths to

images or audio files.

Definition 2 (Multi-Modal Query). ThalamusDB supports SPJA (select-project-join-aggregate)

queries on multi-modal schemata. Compared to standard SQL, ThalamusDB supports one additional

keyword: NL. NL can be used in the WHERE clause and introduces a natural language predicate on a

image, audio, or text column. The function takes two parameters, the column on which to apply

the predicate and a string describing the predicate condition.

The current implementation is restricted to SQL queries referencing non-negative columns in

aggregates and assumes joins in a star schema database. ThalamusDB processes natural language

predicates in queries with the help of models, defined next.

Definition 3 (Zero-Shot Model). Given a predicate text and a data item (picture, audio file, or text),

zero-shot models calculate text-data similarity scores. If similarity is above a similarity threshold

(discussed next), the associated predicate is considered satisfied.

Models may produce inconsistent similarity scores, leading to an imperfect separation between

data items satisfying the predicate and others. However, improving the accuracy of classifiers is an

orthogonal problem and outside the scope of this paper. ThalamusDB aims at exploiting available

models as efficiently as possible. For each predicate, a suitable similarity threshold is determined

via labeling requests (similar to the use of thresholds in other recent work on classification [13]).

Definition 4 (Labeling Request). A labeling request is described by a pair ⟨𝑑, 𝑡, 𝑠⟩ where 𝑑 is a

picture, audio file, or text, 𝑡 text describing a predicate, and 𝑠 a similarity score between text and

predicate. The pair ⟨𝑑, 𝑡⟩ is presented to the user (using a suitable representation, e.g. a playback

console for audio files), asking for input whether 𝑑 satisfies 𝑡 .

ThalamusDB enables users to trade labeling or processing overheads for query result precision.

It produces approximate results defined as follows.

Definition 5 (Approximate Result). Having calculated similarity scores for a subset of rows and

narrowed down similarity thresholds by labeling requests, ThalamusDB calculates (deterministic)

lower and upper bounds for query aggregates. Given upper and lower bounds 𝑢 and 𝑙 , using the

definition by Krenovich [24], the approximation error is (𝑢 − 𝑙)/(𝑢 + 𝑙) ∈ [0, 1]. If queries contain
multiple aggregates, ThalamusDB uses the arithmetic mean error over all aggregates. For queries

without aggregates, ThalamusDB uses (𝑢 − 𝑙)/(𝑢 + 𝑙) where 𝑢 and 𝑙 are upper and lower bounds

on the number of rows in the accurate query result.

ThalamusDB enables users to express preferences between all relevant cost and quality metrics.
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Input 𝑞: Query with NL predicates; 𝑒: Execution plan; 𝑅: Relational DBMS;𝑀 : Multi-modal processor

Output Approximate result (i.e., deterministic bounds)

1: function Execute(𝑞, 𝑒, 𝑅,𝑀)

// Compute similarity scores based on prioritized data processing.

2: for all ⟨𝑧, 𝑠, 𝑘⟩ ∈ 𝑒.𝐶 do
3: 𝑖𝑑𝑠 ← 𝑅.Run(“SELECT {𝑧.𝑐𝑜𝑙} {𝑞.𝑓 𝑟𝑜𝑚} JOIN S{𝑧.𝑖𝑑}

USING {𝑧.𝑐𝑜𝑙} WHERE Score IS NULL ORDER
BY {𝑠} LIMIT {𝑘}”)

// Update scores to the similarity table.

4: for all 𝑖𝑑 ∈ 𝑖𝑑𝑠 do
5: 𝑣 ← 𝑀.ComputeSim(𝑖𝑑, 𝑧)

6: 𝑅.Run(“UPDATE S{𝑧.𝑖𝑑} SET Score={𝑣} WHERE id={𝑖𝑑}”)
// Update score thresholds based on labeling requests.

7: for all ⟨𝑧, 𝑘⟩ ∈ 𝑒.𝐿 do
8: 𝑧.𝜃𝑙 , 𝑧.𝜃𝑢 ← ReqestLabels(𝑧, 𝑘)

// Rewrite query to use similarity tables.

9: 𝑄 ← Rewrite(𝑞)

// Execute rewritten queries to get deterministic bounds.

10: return {R.Run(𝑞) | 𝑞 ∈ 𝑄}
Algorithm 1. Execution process of ThalamusDB.

Definition 6 (User Preferences). ThalamusDB considers approximation error, computational over-

heads, and the number of labeling requests as cost metrics. Users can constrain any of those metrics

(by placing an upper bound) and choose weights on the two unconstrained metrics. ThalamusDB

respects constraints during query processing while it aims to minimize weighted cost.

ThalamusDB solves the following query problem.

Definition 7 (Multi-Modal, Interactive Querying). ThalamusDB processes requests of the form

⟨𝑞, 𝑜⟩ where 𝑞 is a query containing natural language predicates on a multi-modal schema and 𝑜 are

user preference specifications on performance objectives. ThalamusDB calculates similarity scores

for a data subset and returns a set 𝐿 of labeling requests. Users submit answers 𝐴 = {⟨𝑟, 𝑏⟩|𝑟 ∈
𝐿,𝑏 ∈ {𝑌𝑒𝑠, 𝑁𝑜}}, assigning each labeling request to a Boolean answer. Finally, the system returns

an approximate query result.

4 EXECUTION ENGINE
Algorithm 1 executes a given query plan in ThalamusDB. The algorithm can be decomposed into

three parts. First, in Lines 1 to 6, the algorithm applies multi-modal models to calculate scores

quantifying similarity between predicate text and data items. The algorithm focuses on a subset

of predicates and data items, specified as part of the input plan (“prioritized data processing”).

Second, in Lines 7 to 8, Algorithm 1 asks users to label a carefully selected subset of predicate-item

combinations. This helps to establish thresholds on similarity scores for specific predicates, starting

from which predicates are considered as satisfied. Third, in Lines 9 to 10, Algorithm 1 uses all

information gathered in previous steps to calculate lower and upper bounds on query aggregate

values. To do so, the algorithm issues rewritten queries, derived from the original query.

The following three subsections each focus on one of the three parts of Algorithm 1. Table 1

describes query plan properties, used in Algorithm 1 and the following algorithms. Similarly,

Algorithm 1 and the following algorithms refer to properties of query predicates. Table 2 summarizes

the associated fields.
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Table 1. Query 𝑞 with NL predicates and its attributes.

Attribute Semantics

𝑞.𝑍 Natural language predicates in 𝑞

𝑞.𝑎𝑔𝑔𝑠 Aggregates in 𝑞

𝑞.𝑓 𝑟𝑜𝑚 FROM clause in 𝑞
𝑞.𝑤ℎ𝑒𝑟𝑒 WHERE clause in 𝑞
𝑞.𝑙𝑖𝑚𝑖𝑡 Number of rows in LIMIT clause in 𝑞

Table 2. NL predicate 𝑧 and its attributes.

Attribute Semantics

𝑧.𝑖𝑑 Unique id among NL predicates

𝑧.𝑡𝑒𝑥𝑡 Text describing predicate

𝑧.𝑡𝑦𝑝𝑒 Type of the unstructured data, e.g., picture, audio,

text

𝑧.𝑐𝑜𝑙 Name of the column on which 𝑧 is applied

𝑧.𝑡𝑎𝑏𝑙𝑒 Name of the table that contains the column 𝑧.𝑐𝑜𝑙

𝑧.𝜃𝑙 Current lower bound on the score threshold

𝑧.𝜃𝑢 Current upper bound on the score threshold

4.1 Prioritized Data Processing
First, the engine executes processing steps that involve evaluating classifiers on multi-modal data

(Lines 2 to 6 in Algorithm 1). Computation steps are described as triples ⟨𝑧, 𝑠, 𝑘⟩ where 𝑧 is a

predicate, 𝑘 the number of rows and items to evaluate, and 𝑠 the row priority order. For each such

triple, ThalamusDB first collects the IDs of the first 𝑘 items in order 𝑠 for which no similarity

score for predicate 𝑧 is known yet (Line 3). ThalamusDB collects IDs by a query on the underlying

relational database used for processing (we use curly braces to include variables into our SQL

query strings, similar to Python syntax). Next, ThalamusDB iterates over selected items, applies a

suitable model (depending on data modality) to calculate a similarity score (Line 5), and stores the

resulting score in the temporary table associated with the predicate (Line 6). As illustrated in the

following example, the choice of a processing order can have significant impact on the resulting

approximation error (we discuss how to select processing orders in Section 5).

Example 2. The running example query, illustrated in Figure 4, requests the minimal price of offers
satisfying the specified predicates. When ThalamusDB evaluates the natural language predicate to
compute this aggregate (assuming that the inequality predicate on dates has already been processed),
different approaches to processing rows yield varying results. If we process rows in a random order, the
minimal price remains unknown even when we process more items (unless we process all items). This
is because potentially rows with lower prices may yet be unseen. In contrast, if we process rows in an
ascending order based on price values, we can be assured that the first row satisfying the predicate
does indeed have the minimum price among all qualifying rows, eliminating the need to process
subsequent rows. Similar reasoning can be applied to maxima as well as summations and counts with
joins, especially with skewed distributions.

The parameter 𝑘 specifies the number of items to be processed in a single computation step.

Employing a smaller 𝑘 enables more fine-grained decision-making but also leads to increased

optimization overheads. Therefore, it is important to select a 𝑘 value that balances the overheads
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Fig. 5. Lower and upper score thresholds resulting from labeling requests.

with plan quality. ThalamusDB configures𝑘 to be smaller for higher-cost models (in our experiments,

we use 0.1% of data items for audio and 1% for images and texts).

4.2 Labeling Requests
Second, in Lines 7 to 8 of Algorithm 1, ThalamusDB requests labels from users. Labeling requests

are described as pairs of the form ⟨𝑧, 𝑘⟩. Here, 𝑧 denotes a zero-shot predicate and 𝑘 the number of

labels to retrieve. Labeling consists of presenting to users a corresponding data item (by showing a

picture or text or playing an audio file), while asking to decide whether predicate 𝑧 holds for the

item or not. As shown in Figure 5, ReqestLabels in Line 8 performs an algorithm that is similar

to binary search. The goal of labeling is to narrow down the bounds on the similarity threshold

as much as possible, using the given number of labels. Hence, ReqestLabels starts with items

whose similarity scores are as close to the similarity median as possible. Depending on the label

(positive or negative), it either continues with an item whose similarity is close to the median in the

upper half of similarity values (if positive) or in the lower half. To adopt a more robust approach,

we could present several items with consecutive similarity scores, instead of just one. This method

decreases the probability that an item inadequately represents its current score position and helps

in finding accurate score thresholds. The result of labeling are updated lower and upper bounds on

the threshold on similarity, 𝑧.𝜃𝑙 and 𝑧.𝜃𝑢 , starting from which the predicate is considered satisfied.

Finally, ThalamusDB uses similarity values for a subset of predicates and data items, together

with the results of labeling, to calculate an approximate query result. The approximate query result

is calculated using the relational DBMS. Similarity scores, the results of model evaluations, are

already stored in temporary tables inside of the database. Similarity thresholds, resulting from

labeling, are integrated as constants inside of an SQL query.

4.3 Query Rewriting
Finally, in Lines 9 and 10 of Algorithm 1, ThalamusDB calculates upper and lower bounds on the

query results which it returns as output to users. To calculate bounds, ThalamusDB processes SQL

queries on the database containing the results of the previous execution stages. Those queries

exploit similarity scores stored in that database (such scores are only stored for a subset of predicates

and items, selected via prioritized data processing, whereas the scores of all other predicate-item

combinations are set to the SQL NULL value). Also, it exploits thresholds on similarity values,

inferred from user labels (𝑧.𝜃𝑙 and 𝑧.𝜃𝑢 represent lower and upper bounds on the corresponding

similarity threshold for predicate 𝑧).

Algorithm 2 describes how the original query is rewritten to obtain a set of queries generating the

approximate result. This result consists of lower and upper bounds for query aggregates (or, in case

of queries without aggregates, in a set of result rows, some of which are marked as tentative since
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Input 𝑞: Query with NL predicates

Output Rewritten queries (on similarity tables) that compute deterministic bounds for each aggregate.

1: function Rewrite(𝑞)

// Join a similarity table per NL predicate to FROM clause.

2: 𝑓 ← 𝑞.𝑓 𝑟𝑜𝑚

3: for all 𝑧 ∈ 𝑞.𝑍 do
4: 𝑓 ← 𝑓 +“ JOIN S{𝑧.𝑖𝑑} ON S{𝑧.𝑖𝑑}.id = {𝑧.𝑐𝑜𝑙}”

// Initialize WHERE clauses for lower and upper bounds.

5: 𝑤𝑙 ← 𝑞.𝑤ℎ𝑒𝑟𝑒

6: 𝑤𝑢 ← 𝑞.𝑤ℎ𝑒𝑟𝑒

// Replace NL predicate laterals with predicates on similarity scores.

7: for all 𝑧 ∈ 𝑞.𝑍 do
// Refer to Table 3 for DefinitelyTrue(·) and PossiblyTrue(·).

8: 𝑤𝑙 .Replace(¬𝑧, DefiTrue(¬𝑧)).Replace(𝑧, DefiTrue(𝑧))
9: 𝑤𝑢 .Replace(¬𝑧, PossTrue(¬𝑧)).Replace(𝑧, PossTrue(𝑧))

// Case of query without aggregates.

10: if 𝑞.𝑎𝑔𝑔𝑠 = ∅ :
11: 𝑠𝑞𝑙𝑙 ← “SELECT * {𝑓 } {𝑤𝑙 } LIMIT {𝑞.𝑙𝑖𝑚𝑖𝑡}”
12: 𝑠𝑞𝑙𝑢 ← “SELECT * {𝑓 } {𝑤𝑢 } LIMIT {𝑞.𝑙𝑖𝑚𝑖𝑡}”
13: return {𝑠𝑞𝑙𝑙 , 𝑠𝑞𝑙𝑢 }

// For each aggregate, add two queries for lower and upper bounds.

14: 𝑄 ← ∅
15: for all 𝑎(𝑐𝑜𝑙) ∈ 𝑞.𝑎𝑔𝑔𝑠 do
16: if 𝑎 = Avg :

// For average, replace with sum divided by count.

17: 𝑠𝑞𝑙𝑙 ← “SELECT (SELECT Sum(𝑐𝑜𝑙) {𝑓 } {𝑤𝑙 })
/(SELECT Count(𝑐𝑜𝑙) {𝑓 } {𝑤𝑢 })”

18: 𝑠𝑞𝑙𝑢 ← “SELECT (SELECT Sum(𝑐𝑜𝑙) {𝑓 } {𝑤𝑢 })
/(SELECT Count(𝑐𝑜𝑙) {𝑓 } {𝑤𝑙 })”

19: else if 𝑎 = Min then
// For minimum,𝑤𝑙 and𝑤𝑢 are swapped.

20: 𝑠𝑞𝑙𝑙 ← “SELECT 𝑎(𝑐𝑜𝑙) {𝑓 } {𝑤𝑢 }”
21: 𝑠𝑞𝑙𝑢 ← “SELECT 𝑎(𝑐𝑜𝑙) {𝑓 } {𝑤𝑙 }”
22: else
23: 𝑠𝑞𝑙𝑙 ← “SELECT 𝑎(𝑐𝑜𝑙) {𝑓 } {𝑤𝑙 }”
24: 𝑠𝑞𝑙𝑢 ← “SELECT 𝑎(𝑐𝑜𝑙) {𝑓 } {𝑤𝑢 }”
25: 𝑄 ← 𝑄∪ {𝑠𝑞𝑙𝑙 , 𝑠𝑞𝑙𝑢 }

26: return 𝑄

Algorithm 2. Query rewriting of ThalamusDB.

it is unclear whether they satisfy all associated predicates). First, the rewriting procedure augments

the original FROM clause by adding all relevant similarity tables, storing text-item similarity values

for natural language predicates, together with suitable join conditions (Lines 2 to 4). Next, two

different variants of the SQL WHERE clause are generated (Lines 5 to 9). The first one,𝑤𝑙 , selects rows

which may or may not satisfy all natural language predicates. The second one, 𝑤𝑢 , selects rows

that definitely satisfy all natural language predicates. Due to limited computation and labeling, we

cannot verify for all rows whether they satisfy all predicates (e.g., ’Unknown’ in Figure 5 where the

score thresholds are too broad to determine its state). The two different WHERE clauses are used to

calculate lower and upper result bounds, expressing that uncertainty. To obtain these two variants,

occurrences of natural language predicates are substituted according to Table 3. Negated predicate
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Table 3. Rewrite rules for NL predicate occurrences.

Original SQL DefinitelyTrue(·) PossiblyTrue(·)

NL(col, str) score≥ 𝜃𝑢 score> 𝜃𝑙
OR score IS NULL

NOT NL(col, str) score≤ 𝜃𝑙 score< 𝜃𝑢
OR score IS NULL

SELECT Min(A.Price) FROM Ads A

JOIN Pics P USING (AdID)

JOIN S0 USING (FilePath)

WHERE Created > DATE'2022-01-01'

AND (S0.Score > 𝜃𝑙 OR S0.Score IS NULL)

Fig. 6. Rewritten query that computes lower bound on the minimal price of ads offering chairs
after January 1st 2022.

occurrences are treated separately and replaced before the others. Note the reference to NULL

values in Table 3. If a row in the similarity table has a NULL value, the corresponding predicate has

not been evaluated on the associated data item.

Queries without aggregates are a special case and handled in Lines 10 to 13. Here, the approximate

result are two row sets, one definitely satisfying all predicates, the other one possibly satisfying

all predicates. These result sets can be generated directly, based on the two WHERE clause variants

obtained in the previous step.

Finally, in Lines 14 to 29, Algorithm 2 iterates over different aggregates in the select clause. For

each aggregate, it generates two queries (collected in query set 𝑄), calculating the lower bound

for that predicate and the upper bound respectively. For instance, for maxima, sum, and count

aggregates, the upper bound is obtained by considering all rows that possibly satisfy the predicates

(assuming non-negative values in aggregation columns). Considering only rows definitely satisfying

all predicates yields lower bounds on the aggregate result value. For the minimum, considering all

rows possibly satisfying predicates leads to a lower bound, restricting the scope to rows definitely

satisfying predicates yields an upper bound. For the average, lower and upper bounds can be

obtained by reduction to lower and upper bounds of the sum and the count. Algorithm 2 ultimately

returns the set of rewritten queries which are executed in Algorithm 1, generating the approximate

result.

Example 3. To calculate bounds on the price of offers for wooden chairs with blue cushions, Thala-
musDB would run the rewritten query in Figure 6 to compute the lower bound for the minimal price.
In its FROM clause, it refers to the original tables, Ads and Pics, as well as to table S0. The latter table
contains similarity scores for the items that were selected during prioritized processing (see Section 4.1).
The rate at which these result bounds narrow depends on the specific predicate and the data

distribution. For this minimum query, ThalamusDB would ideally employ prioritized processing,
sorting ads in ascending order by price. However, consider a challenging scenario where there are
1,000 ads selling pencils (priced lower than the cheapest chair) and a user constraint on computational
overheads, limiting the maximum number of items that can be evaluated to 500. In such a case, some
pencil ads remain unevaluated, leading to a less accurate lower bound. This is because, as shown in
Table 3, the lower bound is calculated based on rows that may satisfy the predicate, i.e., score > 𝜃𝑙
OR score IS NULL. To obtain a lower bound with zero error, it is necessary to evaluate all pencil ads
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Input 𝑞: Query with NL predicates; 𝑜 : Performance objectives

Output Optimal execution plan

1: function Optimize(𝑞, 𝑜)

// Generate all possible actions for the query.

2: 𝐴← ∅
3: for all 𝑧 ∈ 𝑞.𝑍 do

// Add computation actions.

4: 𝐴← 𝐴 ∪ {⟨‘compute’, 𝑧, “NULL”⟩}
5: for all 𝑐𝑜𝑙 ∈ 𝑞.𝑐𝑜𝑙𝑠 do
6: 𝐴← 𝐴 ∪ {⟨‘compute’, 𝑧, “{col} ASC”⟩}
7: 𝐴← 𝐴 ∪ {⟨‘compute’, 𝑧, “{col} DESC”⟩}

// Add labeling request actions.

8: 𝐴← 𝐴 ∪ {⟨‘labeling’, 𝑧⟩}
// Find a plan that satisfies the user constraint.

9: 𝑒 ← 0
𝐴

10: 𝛿 ← 1

11: while ¬ Cost(𝑒, 𝑞)⪯ 𝑜.𝑏 :
// 𝛿 : exponentially increasing increment value (𝛽 ≥ 1).

12: 𝛿 ← 𝛽𝛿

// Add an action that improves the constrained metric the most.

// 𝑢𝑎 : unit vector where the dimension of 𝑎 has a value of one.

13: 𝑎∗ ← argmin𝑎∈𝐴 max𝑚 (Cost(𝑒 + ⌊𝛿⌋𝑢𝑎, 𝑞)𝑚 − 𝑜.𝑏𝑚)
14: 𝑒𝑎∗ ← 𝑒𝑎∗ + ⌊𝛿⌋

// Local search until no cost improvement.

15: 𝑒∗ ← Null
16: 𝛿 ← 1

17: while 𝑒∗ ≠ 𝑒 :
18: 𝑒∗ ← 𝑒

19: 𝑐 ← Cost(𝑒, 𝑞)

20: 𝛿 ← 𝛽𝛿

// Iterate over neighboring plans with distance ⌊𝛿⌋.
21: for all 𝑒′ ∈ {𝑒 + 𝑠 ⌊𝛿⌋𝑢𝑎 |𝑠 ∈ {−1, +1};𝑎 ∈ 𝐴} do

// Update if 𝑒′ satisfies constraint and has better cost.

22: 𝑐′ ← Cost(𝑒′, 𝑞)
23: if 𝑐′ ⪯ 𝑜.𝑏 and 𝑐′ · 𝑜.𝑤 < 𝑐 · 𝑜.𝑤 :
24: 𝑒 ← 𝑒′

25: break
26: return 𝑒∗

Algorithm 3. Optimization process of ThalamusDB.

before ThalamusDB can identify the first chair with the lowest price. Nevertheless, our experiments
on real-world datasets demonstrate that minimum queries are, in fact, scenarios where significant
performance gains are observed compared to baselines. For example, in our Craigslist dataset, there are
ads of people offering chairs for free, avoiding the aforementioned case.

5 QUERY OPTIMIZATION
Algorithm 3 is executed by the query optimizer component. As input, the optimizer considers the

query to optimize as well as user-specified preferences and constraints with regards to performance

tradeoffs. The optimizer performs multi-objective optimization, considering the three metrics

approximation error, execution time, and number of labels requested from users. As discussed in
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more detail in the last section, approximation errors are due to missing labels or missing similarity

scores for natural language predicates. At the same time, processing overheads are dominated by

inference time of large neural networks, making SQL query processing time negligible. Hence, in

summary, plan processing costs according to all three metrics depend mostly on the treatment of

natural language predicates. Therefore, optimization focuses on carefully selecting data subsets for

labeling and predicate evaluations.

Plan Space. Execution plans are represented as vectors. Vector components represent possible

actions of the execution engines. Actions are divided into two categories: requesting labels from

users and calculating similarity scores for predicates. Each type of action is parameterized by the

target predicate as well as, optionally, by a row sort order. For each action, the execution plan vector

contains an integer number, representing the number of rows (in sort order) to which the operation

is applied. Algorithm 3 collects relevant actions in Lines 2 to 8. It considers all natural language

predicates in the query (𝑞.𝑍 ). For each predicate, it adds actions representing model invocations

in Lines 4 to 7. We consider the default row order (Line 4) as well as sorting by any column that

appears in the query (𝑞.𝑐𝑜𝑙𝑠). As discussed in Section 6, approximation error may vary depending

on the subset of rows to which operations are applied.

Satisfying User Constraint. Given the set of relevant actions, 𝐴, the optimizer initializes an

empty plan (setting each vector component to zero in Line 9). Next, the optimizer greedily adds

actions to obtain a plan that satisfies all cost constraints, imposed by the user (Lines 11 to 14). Given

an execution plan and a vector, Function Cost returns a vector containing cost estimates for all

three cost metrics. The only cost metric that can improve by adding more actions is approximation

error. Hence, if user-defined error constraints on error are not satisfied, the optimizer greedily adds

actions to minimize approximation error. This process is guaranteed to terminate: if all similarity

scores are calculated and all labels obtained, the approximation error must reduce to zero.

Local Search for Optimal Plan. Next, the optimizer improves the plan via local search until a

local optimum is found (Lines 15 to 25). The loop terminates once the best plan in the previous

iteration equals the best plan after the current iteration. Each iteration considers neighbors of the

currently selected plan in the search space, obtained by changing the number of actions for one

action type (i.e., one vector component). Plans are evaluated based on their cost vectors. First, each

plan must satisfy the user-defined cost constraints, expressed via cost vector 𝑜.𝑏. The expression

𝑐′ ⪯ 𝑜.𝑏 denotes a multi-dimensional comparison, evaluating to true only if the cost vector 𝑐′ of
the current plan is below or at the bound 𝑜.𝑏 for every cost metric. Second, a plan satisfying the

cost constraint is evaluated according to its weighted cost, 𝑐′ .𝑜 .𝑤 (i.e., the dot product between

plan cost vector and cost weights). An iteration ends once a new plan is found which improves

weighted cost.

When constructing initial plans as well as during local search, we vary the “step size”, i.e., the

number of actions added or subtracted in one iteration. This is motivated by our initial experiences

with a fixed step size, leading to slow optimization for plans that require many actions to satisfy

user constraints. Using a large step size, however, may lead to sub-optimal results for plans that

require few actions. Hence, we generally start with a small step size that is increased over time,

thereby optimizing small plans within a more fine-grained search space than large ones. Here, 𝛽

is a tuning parameter, determining how quickly step size increases. Note that we floor raw float

values, representing the number of actions, as the final number of actions must be an integer.

We performed experiments, summarized in Section 7.3, showing that a variable step size leads to

performance improvements.
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6 ERROR ESTIMATION MODEL
The optimizer described in Section 5 relies on models, estimating processing costs, the number of

labels, and the approximation error after plan execution. ThalamusDB predicts cost according to

the first two metrics via standard methods (using the number of labeling requests as well as the

number of model invocations, multiplied by the average time per invocation that ThalamusDB

measures during pre-processing). This section describes how ThalamusDB estimates approximation

error after executing a specific plan.

6.1 Estimating Selectivity
To estimate approximation error, we first must estimate the selectivity of natural language predicates.

After plan execution, given one specific predicate, table rows can be classified into rows that

definitely satisfy that predicate, rows that definitely do not satisfy the predicate, and rows for which

it is unclear whether or not they satisfy the predicate. ThalamusDB estimates the ratio of rows

in each category. First, ThalamusDB estimates the threshold 𝜃𝑢 on the similarity value (similarity

between predicate text and analyzed item), starting fromwhich the predicate is considered definitely

satisfied. Also, it estimates the threshold 𝜃𝑙 below which the predicate is considered definitely not

satisfied (the predicate status is undetermined for similarity values in [𝜃𝑙 , 𝜃𝑢]). Both thresholds are

determined by user answers to labeling requests. As user answers are hard to predict, ThalamusDB

assumes a uniform distribution over both possible answers for each (binary) labeling request and

calculates estimates under that assumption. Second, ThalamusDB estimates the ratio of rows whose

similarity values are known and above 𝜃𝑢 , below 𝜃𝑙 , or in the range [𝜃𝑙 , 𝜃𝑢]. The number of rows

whose similarity values are known is directly given by the plan (specifying for each predicate the

number of rows for which the associated multi-modal model is applied). Based on similarity values

obtained during pre-processing for the same predicate and a data sample, ThalamusDB estimates

the ratios of rows with similarity values above and below the two thresholds.

Estimating selectivity for composite predicates is more challenging. In particular, we need to take

into account that different predicates may have been processed on different row subsets. Consider

two natural language predicates involved in a composite predicate (i.e., a conjunction or disjunction).

As it is common in the domain of selectivity estimation [39], we assume statistical independence

between both predicates. Denote by 𝑆 the set of sort orders considered by the optimizer (based on

columns that appear in query aggregates). Further, denote by 𝑝𝑖,𝑠 for 𝑖 ∈ {0, 1} and 𝑠 ∈ 𝑆 , the ratio
of rows, selected according to sort order 𝑠 , for which predicate 𝑖 was evaluated. Then, we can write

𝑝 =
∑

𝑠∈𝑆 min𝑖 (𝑝𝑖,𝑠 ) to capture the total ratio of rows on which both predicates were evaluated.

Considering only those rows, the ratio of rows known to satisfy a conjunction of predicates is 𝑝𝑡1𝑡2
where 𝑡𝑖 for 𝑖 ∈ {0, 1} refers only to rows on which the 𝑖-th predicate was evaluated. It denotes

the ratio of rows, known to satisfy that predicate after execution, within that row subset (and is

estimated from the pre-processed sample). We denote by 𝑟𝑖 =
∑

𝑠∈𝑆 𝑝𝑖,𝑠 − 𝑝 the ratio of remaining

rows processed for the 𝑖-th predicate. For those rows, it is not guaranteed that the other predicate

was evaluated as well. However, there is a chance that rows in different orders overlap. More

precisely, we expect ratio 𝑟1 · 𝑟2 of rows on which both predicates are evaluated, even though the

corresponding evaluation actions used different row orders. The expected ratio of rows known to

satisfy all predicates among them is 𝑟1𝑟2𝑡1𝑡2. Hence, in total, the expected ratio of rows known to

satisfy the conjunction, is 𝑡1𝑡2 (𝑝 + 𝑟1𝑟2).
Denoting by 𝜎𝑇 (𝑥), 𝜎𝐹 (𝑥), and 𝜎𝑈 (𝑥) the expected ratio of rows known to be true, false, or

not known to be either for a predicate 𝑥 , after execution, we generally have 𝜎𝐹 (𝑥) = 𝜎𝑇 (¬𝑥),
𝜎𝑈 (𝑥) = 1 − 𝜎𝑇 (𝑥) − 𝜎𝐹 (𝑥), and 𝜎𝑇 (𝑥1 ∨ 𝑥2) = 𝜎𝑇 (¬(¬𝑥1 ∧ ¬𝑥2)). Hence, we can apply the same
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reasoning as before to obtain estimates for all of the aforementioned selectivity values and predicate

types.

6.2 Estimating Error
We exploit selectivity estimates to estimate error bounds for different types of aggregates, af-

ter plan execution. We denote by 𝑛𝑇 the expected number of join result rows, known to satisfy

all predicates. By 𝑛𝑈 x, we denote the number of rows with unknown status. For aggregates of

type count(*), lower and upper bounds are obtained immediately from selectivity estimates as

[𝑛𝑇 , 𝑛𝑇 + 𝑛𝑈 ]. For aggregates of type sum(a), we simply multiply the previous bounds with the

average value 𝑣𝑎 in the aggregation column a: [𝑣𝑎𝑛𝑇 , 𝑣𝑎 (𝑛𝑇 + 𝑛𝑈 )]. We reduce average aggre-

gates to bounds for sum and count aggregates. For an aggregate avg(a), we estimate bounds

[𝑠𝑢𝑚𝐿 (𝑎)/𝑐𝑜𝑢𝑛𝑡𝑈 (∗), 𝑠𝑢𝑚𝑈 (𝑎)/𝑐𝑜𝑢𝑛𝑡𝐿 (∗)] where 𝑠𝑢𝑚𝐿 (𝑎), 𝑠𝑢𝑚𝑈 (𝑎), 𝑐𝑜𝑢𝑛𝑡𝐿 (∗), and 𝑐𝑜𝑢𝑛𝑡𝑈 (∗) de-
note upper and lower bounds for count and sum aggregates.

We estimate lower and upper bounds for minima, min(a), using an auxiliary function. Consider

values 𝑉 = {𝑣𝑖 } such that 𝑣𝑖 ≤ 𝑣𝑖+1 (i.e., values are sorted in ascending order). Function 𝐹 (𝑉 ,𝑑, 𝑏)
calculates the expected outcome of the following experiment: considering values in ascending

order, we flip a coin with bias 𝑏 after each value and return that value if the coin flip succeeds. If

no coin flip succeeds, default value 𝑑 is returned. We use this function in our scenario as follows.

Denote by𝑉𝑎 the values that appear in the aggregation column a and by 𝑑 =𝑚𝑎 the maximal value

for this column in the database. We set 𝑏 = 𝑡 where 𝑡 is the probability (calculated as described in

the previous section) that all predicates evaluate to (certainly) true after evaluation. Considering

values in column 𝑎 in ascending order, the first row satisfying all predicates provides us with an

upper bound on the minimum (the largest value serves as a default bound). Function 𝐹 (𝑉𝑎,𝑚𝑎, 𝑡)
calculates that upper bound. Similarly, considering rows in ascending order of their value in column

a, starting with the minimal value in the entire database, the first row whose predicates evaluate to

true or to unknown status provides us with a lower bound on the minimum. Setting 𝑏 = 𝑡 + 𝑢 (i.e.,

the probability of true or unknown status),𝑉𝑎 to the minimal values in column a, and 𝑑 = max(𝑉𝑎),
the expression 𝐹 (𝑉𝑎, 𝑑, 𝑡 + 𝑢) yields a lower bound as well.

We calculate 𝐹 (𝑉 ,𝑑, 𝑏) as follows. The probability of a successful coin flip is 𝑏. Hence, the

probability to return the first value in𝑉 is 𝑏. The probability to return the second value is 𝑏 · (1−𝑏)
(the probability to succeed in the second try but not in the first). Generalizing this reasoning, we

obtain

∑
𝑖 𝑏 · (1 − 𝑏)𝑖−1 · 𝑣𝑖 + (1 − 𝑏) |𝑉 | · 𝑑 for the expected value. Evaluating this expression would

require retrieving and iterating over database content. This may be costly for large databases (as the

cost function is invoked repeatedly during optimization). Instead, we approximate 𝐹 by assuming

uniform distribution of values between the minimal and maximal value in 𝑉 . This simplifies the

previous formula to

∑
𝑖 𝑏 · (1−𝑏)𝑖−1 · (min(𝑉 )+𝛿 ·𝑖)+ (1−𝑏) |𝑉 | ·𝑑 where 𝛿 = (max(𝑉 )−min(𝑉 ))/|𝑉 |

is the average distance between elements in 𝑉 . For estimating bounds, the relevant value ranges

derive from the row orders that appear in the execution plan. We use column value statistics to

estimate minima and maxima for specific row orders and specified number of rows evaluated. We

omit the discussion of maxima as well as summations and counts with certain sort orders, which

are handled in a similar manner.

7 EXPERIMENTAL EVALUATION
Section 7.1 introduces the experimental setup. Section 7.2 presents an end-to-end performance

comparison of ThalamusDB to baselines, including MindsDB [30] and ABAE [20]. Section 7.3

analyzes ThalamusDB in detail and Section 7.4 provides error analysis.

Proc. ACM Manag. Data, Vol. 2, No. 3 (SIGMOD), Article 186. Publication date: June 2024.



186:16 Saehan Jo and Immanuel Trummer

Table 4. Overview of benchmark data sets.

Dataset Table #Rows #Columns Multi-Modal Column

YouTube Videos 46,774 11 AudioClip AUDIO
Description TEXT

Craigslist Pics 14,674 2 FilePath PICTURE

Ads 3,000 7 Title TEXT

Netflix Movies 17,770 4 FeaturedReview TEXT

Ratings 100M 4 -

7.1 Experimental Setup
Benchmarks. We created three benchmarks for multi-modal data processing, based on real-world

data from YouTube, Craigslist, Netflix, and IMDb. Table 4 shows an overview of the properties of

the data sets. The YouTube data set contains information about videos on YouTube. The Videos
table consists of columns on multi-modal data, including audio and text. The AudioClip column

contains paths to audio files from the AudioCaps data set [10, 23]. The AudioCaps data set consists

of short audio clips extracted from YouTube. We augment the AudioCaps data set by extracting

information (e.g., title, description, viewcount, and likes) from the corresponding video posts in

relational format. The Craigslist data set contains information (e.g., pictures, price, title) about ads

on the Craigslist website. We crawled 3,000 ad posts on furniture for sale, with at least one picture

per ad. The data set consists of the Ads table as well as the Pics table since there can be more than

one picture for an ad. The Netflix data set [16] consists of movies and their ratings. We introduce a

new column in the Movies table by augmenting each movie with a review from the IMDb reviews

data set [28]. The YouTube, Craigslist, and Netflix benchmarks consist of 24, 25, and 6 queries,

respectively (the Netflix benchmark has fewer queries due to having one multi-modal column). The

benchmark consists of Min, Max, Sum, Avg, and Count aggregation queries as well as select queries

with Limit clauses. We introduce NL predicates on audio, image, and text columns described in

Table 4 in our benchmark queries. Every query includes at least one NL predicate and may also

include a combination of two predicates linked by conjunction or disjunction. For the Craigslist and

Netflix benchmarks, we introduce queries that join the Pics table with the Ads table and the Movies
table with the Ratings table. To experiment with a large number of configurations efficiently, we

simulate user answers to labeling requests, based on manually determined thresholds. Thresholds

range from -28 to 27 and vary significantly even for the same model and column, depending on the

predicate (e.g., between 16 and 27 for the Pic.FilePath column with predicates 'wooden' and

'leather sofa'). This wide range of thresholds justifies calibrating models with efficient labeling

requests.

Baselines.We compare our system against two recent baselines that support a subset of our

benchmark queries. MindsDB [30] is a data processing system that integrates machine learning

(ML) into the database. At present (v23.1.3.2), it lacks support for image and audio classification.

ABAE [20] is a query processing system for accelerating aggregation queries with expensive predi-

cates involving costly ML methods. The system utilizes stratified and pilot sampling techniques and

thus supports Sum, Count, and Avg aggregates. Note the the current version (v0.3.7) of EvaDB [17]

does not support zero-shot classification, making it difficult for comparison.

Implementation. ThalamusDB is implemented in Python 3. It uses DuckDB [35] as the under-

lying relational DBMS. We use CLIP [36] for image processing, the model by Mei et al. for audio

processing [29], and Sentence-BERT [37] as well as BART [26] for text processing. Taking into
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Fig. 8. Scaled cost of ABAE compared to ThalamusDB on all benchmarks (Y, Cr, N) with different
predicates (‘and’ for conjunction, ‘or’ for disjunction, and the rest are single predicates). A higher
degree of blue shade indicates a lower cost for ThalamusDB compared to ABAE (while red indicates
the opposite).

account the inference speed of each model, ThalamusDB processes 1% of data items for images and

texts and 0.1% for audio per computation step. During preprocessing, we request three labels and

process one computation step per NL predicate in the query. All experiments were executed on a

server with two Intel Xeon Gold 5218 CPUs (2.3GHz with 32 physical cores), 384 GB of RAM, and

two GeForce RTX 2080Ti GPUs.

7.2 Comparison against Baselines
MindsDB. In Figure 7, we present the computation overheads (i.e., runtime) of ThalamusDB and

MindsDB on all queries supported by MindsDB. MindsDB is limited to queries that involve natural

language predicates on text data types. Hence, it is able to execute 12 out of our 49 benchmark

queries. Furthermore, to address the lack of support for collecting labels in MindsDB, we provide
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the system with ground truth score thresholds for NL predicates (without counting additional cost).

For ThalamusDB, we apply an error constraint of 10%. ThalamusDB achieves an average speedup

of 35.0× over MindsDB, due to its approximate query processing and prioritized data evaluation.

For single queries, ThalamusDB achieves up to 1,648.4× speedup. In this experiment, we employ

BART in both systems because of technical issues related to running BERT on MindsDB. We use

BERT in the rest of our experiments.

ABAE. In Figure 8, we present the scaled costs of ABAE, compared to ThalamusDB. A greater

intensity of blue color indicates lower cost for ThalamusDB, compared to ABAE (red color represents

the opposite). ABAE available on [18] is able to run 8 out of 49 benchmark queries. Similar to

MindsDB, we provide ABAE with labels for NL predicates with no computational overheads. We

evaluate two versions of ABAE: one collects three labels per NL predicate (named “ABAEmin”),

the minimal number collected by ThalamusDB, and the other collects the maximal number of

labels to determine precise thresholds (named “ABAEmax”). ABAE requires an efficient proxy model

per predicate to compute proxy scores for all data items. We provide ABAE with ground truth

similarity scores evaluated on the oracle models as proxy scores at no cost (i.e., without counting

any computational overheads). We opt for a confidence value of 1 − 10
9
for ABAE to ensure a

high level of confidence, approaching the 100% confidence guarantee of ThalamusDB as closely

as possible. MindsDB employs exact query processing, whereas ThalamusDB and ABAE exploit

approximation. Thus, for both systems, we vary the error constraint between 5%, 10%, and 50%

and the weight values between 1, 10, 10
2
, 10

3
, and 10

4
. The darkest shade of blue indicates the

highest cost differences or cases where ABAE fails to meet the error constraint, despite processing

the same number of rows as the entire dataset. ThalamusDB has lower costs than ABAEmax and

ABAEmin for the majority of cases (91.1% and 67.7%, respectively). On average, ABAEmax incurs

2.4× cost overhead and ABAEmin incurs 2.1× cost overhead, compared to ThalamusDB. In general,

ThalamusDB outperforms ABAE by a larger margin when the error constraint is stricter (e.g., 5%).

ABAE struggles to meet the error constraint for highly selective predicates (e.g., conjunction) since

it is based on sampling. In the next subsection, we further present how predicate selectivity affects

the performance of our system.

7.3 Further Analysis
We demonstrate that ThalamusDB has the capability to adapt to user preferences and achieve

optimal performance. We evaluate ThalamusDB with six different user preference configurations,

denoted as 𝐶𝑙 , 𝑐𝐿, 𝐶𝑒 , 𝑐𝐸, 𝐿𝑒 , and 𝑙𝐸 in the following plots. Here, we use letters 𝑐 , 𝑙 , and 𝑒 to denote

computation overheads (in seconds), the number of labels, and the error. The two letters associated

with a configuration represent the two metrics that appear in the cost formula, lowercase letters

represent small weights (here: 1) while uppercase letters represent large weights (10
4
). In each

case, the third metrics (not referenced by any letter) is constrained using thresholds: 10 seconds,

five labels per predicate, and 10% for computation overheads, the number of labels, and the error,

respectively.

Simplified Versions of ThalamusDB. For an ablation study, we introduce three simplified

versions of ThalamusDB. First, we consider an exact processing baseline (named “Exact”) that

computes similarity scores for all data items constrained by NL predicates. It then finds the precise

similarity threshold for each predicate via labeling requests using binary search. The second

baseline (named “+Ordered”) uses the optimal evaluation order for NL predicates (considering

selectivity and evaluation costs) to reduce computational overheads. The third baseline (named

“+Approx.”) exploits deterministic approximation, thereby reducing the amount of data that needs

to be processed to answer a query. ThalamusDB additionally uses a cost-based query optimizer

that optimizes execution plans according to user preferences and constraints.
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Fig. 9. Scaled costs of simplified versions of ThalamusDB compared to the final version (i.e., the
final version, not plotted, has a scaled cost of one).

Figure 9 shows the scaled costs of different ablations compared to ThalamusDB (i.e., ThalamusDB

has a scaled cost of one). We present average values for all benchmarks and different performance

objective specifications. Compared to ThalamusDB, on average, the Exact baseline has a 951.5×
average cost overhead across all benchmarks. The +Ordered baseline demonstrates better perfor-

mance, compared to Exact, but, compared to ThalamusDB, has a 945.5× average cost overhead. The

+Approx. baseline is able to reduce computational overheads, compared to the other two baselines,

but suffers from the lack of an optimizer to select most effective actions. As a result, it suffers

34.0×, 162.1×, and 6.0× average cost overheads for YouTube, Craigslist, and Netflix, compared to

ThalamusDB.

As part of another ablation study, we deactivate the coarsening scheme integrated in the optimiza-

tion process. In the YouTube benchmark, out of the 12 cases that are particularly time-consuming

in terms of optimization time, using a variable step size (𝛽 = 1.01) improves the optimization speed,

compared to a fixed step size (𝛽 = 1), by an average factor of 2.4× with comparable result quality.

Runtime Breakdown. Figure 10 depicts the runtime breakdown of different processing parts of

ThalamusDB into percentages. Across all cases, the computation of similarity scores through model

inference constitutes the majority of the runtime. On average, model inference makes up 92.4% of

the total runtime for YouTube, 89.6% for Craigslist, and 50.7% for Netflix. In contrast, relational

processing, which includes sorting data for prioritized data processing, accounts for an average

of 4.1%, 2.5%, and 45.5% for YouTube, Craigslist, and Netflix, respectively. Netflix has a higher

percentage for relational processing compared to other benchmarks. This is because the natural

language predicates in the Netflix benchmark apply only to text data and not to image or audio

data. Note also that this breakdown is based on the runtime after our optimization to minimize
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the inference overheads. The expensive nature of model inference justifies the effort invested in

optimizing data processing for reduced processing overheads.

Predicate Selectivity. Figure 11 illustrates the impact of predicate selectivity on the performance

of ThalamusDB. We compare against the Exact baseline on the Craigslist data set, using benchmark

queries with a single predicate on the Pic.FilePath column. Specifically, we apply seven NL
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Fig. 13. Bound errors across various aggregate types.

predicates with varying selectivity: leather sofa, blue chair, wooden chair, dining table,
sofa, table, and wooden. We use a performance objective with a constraint on the error metric

since the Exact baseline fails to satisfy constraints on the other two metrics for most of the queries.

We use a weight value of𝑤 = 1, presenting the cost value for each predicate and aggregate function.

For Sum aggregates, ThalamusDB shows larger cost improvements over the Exact baseline for

less selective predicates. By prioritizing data items with large values in the aggregated column,

ThalamusDB can process fewer data items to satisfy the error constraint. However, when predicates

are highly selective, ThalamusDB needs to process almost all data items to meet the error constraint.

ThalamusDB demonstrates large cost improvements for Min, Max, and Limit queries. For Count

and Avg aggregates, ThalamusDB show small improvements (note that the Netflix benchmark

shows better improvements on these two aggregate types). Nonetheless, in all cases, there is a

tendency of cost improvements for less selective predicates.
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7.4 Error Analysis
We provide detailed insights into the approximation errors of deterministic bounds generated by

ThalamusDB. We consider two types of errors: 1) bound error and 2) relative error. First, the bound

error is the error defined in Definition 5 as (𝑢 − 𝑙)/(𝑢 + 𝑙), which measures the relative distance

between the lower and upper bounds 𝑙 and 𝑢 [24]. This error is advantageous as it does not require

us to know the true value 𝑣𝑡 . Thus, it is the error metric utilized during query optimization in

ThalamusDB. Second, the relative error is computed using the formula | (𝑣𝑡 − 𝑣𝑒 )/𝑣𝑡 |, where 𝑣𝑡 is
the true value and 𝑣𝑒 is the estimated value of 𝑣𝑡 . We obtain 𝑣𝑡 through exact processing, in which

all items are evaluated and a sufficient number of labels are provided to determine the precise score

threshold. This value of 𝑣𝑡 is indeed the ground truth value if the model exhibits perfect precision.

For the estimated value 𝑣𝑒 , we calculate it as the midpoint between the deterministic bounds, using

the formula (𝑢 − 𝑙)/2.
Relative Error and Bound Error. Figure 12 displays the cumulative distribution functions

of relative errors and bound errors for all queries across each benchmark. It demonstrates that

ThalamusDB effectively generates appropriate bounds in accordance with the specified performance

objective. When the bound error is constrained to 10% (𝐶𝑙 and 𝑐𝐿), the cumulative probability

indeed approaches 100% as the error nears 10%. This observation holds true not only for the bound

error but also for the relative error. As proposed in [24], this demonstrates that bound error is a

good alternative to relative error when the true value is unknown. Performance configurations that

assign large weights to the error metric (𝑐𝐸 and 𝑙𝐸) accumulate probability more rapidly, indicating

lower errors, compared to their counterparts (𝐶𝑒 and 𝐿𝑒). For instance, at the 50th percentile,

𝑐𝐸 displays relative errors of 5.2% and 3.9% for YouTube and Craigslist, respectively, whereas 𝐶𝑒

exhibits an error of 100%. Similarly, in the Netflix benchmark, 𝑐𝐸 shows a relative error of 0.8% at

the 80th percentile, while 𝐶𝑒 has an error of 44.4%.

Error per Aggregate Type. Figure 13 illustrates the approximation error for each aggregate

type. We employ a performance objective constrained by the error metric. ThalamusDB yields

lower errors for Min, Max, and Limit aggregates compared to Sum, Avg, and Count aggregates.

As minima and maxima are determined by single items, the potential of prioritized processing

increases. In all cases, the bound error is less than or equal to 10%, meeting the error constraint.

Figure 14 displays the F1 scores of Limit queries across all benchmarks. It shows the highest F1

scores when the error is constrained (𝐶𝑙 and 𝑐𝐿), followed by the second-highest scores for large

weights on error (𝑐𝐸 and 𝑙𝐸), and lower scores when the error is unconstrained and not given high

weights (𝐶𝑒 and 𝐿𝑒).

Impact of Pre-processing. Figure 15 displays the relative error in estimated selectivity across

different numbers of items processed during the pre-processing phase. As more items are processed

to collect statistics, the estimates become more accurate. However, there are diminishing returns

with increasing numbers of pre-processed items. Furthermore, extensive pre-processing limits the

ability of ThalamusDB to reduce computational overheads.
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Table 5. Ratio and error improvement of post-processing actions for performance objectives with
error ≤ 10%.

Benchmark Cost Function
# Post-Processing

# All Actions
Error Improvement

YouTube 𝐶𝑙 0.183 0.153

YouTube 𝑐𝐿 0.248 0.246

Craigslist 𝐶𝑙 0.145 0.254

Craigslist 𝑐𝐿 0.170 0.247

Netflix 𝐶𝑙 0.007 0.001

Netflix 𝑐𝐿 0.000 0.000

Impact of Post-processing. Table 5 presents the ratio and error improvement of post-processing

actions across all benchmarks. The ratio of post-processing actions to the total number of actions

is relatively small, being less than 25% for all benchmarks and cost functions. Similarly, the error

improvement due to post-processing actions is also modest (under 26% in all cases), suggesting

that the initial error was already reasonably close to the target error.

Impact of Model Accuracy. Figure 16 illustrates the lower and upper bounds produced by

ThalamusDB on the Netflix benchmark, using two models with varying levels of accuracy: Sentence-

BERT (all-MiniLM-L6-v2) and BART. This figure compares these bounds against the exact query

results that employ the ground truth labels from the Netflix benchmark. BART, being a larger

model than Sentence-BERT (with pytorch_model.bin sizes of 1.02 GB compared to 90.9 MB), allows

ThalamusDB to establish bounds closer to the ground truth value (for queries q3 and q5). Note that

these bounds might not contain the exact query result due to the imperfect accuracy of the models.

However, ThalamusDB consistently delivers accurate result bounds using the larger model in all

cases, except for query q3, where the results are still very close to the ground truth value.

8 RELATEDWORK
Zero-shot Models. Traditional classifiers, like those trained with ImageNet [14], have evolved with

the advent of zero-shot and few-shot models, which leverage vast pre-training onweb-scale text data

to comprehend and perform classification tasks from natural language descriptions alone [5]. These

models have permeated various domains including computer vision [36] and audio processing [29],

but often face limitations in handling large input sizes and require frameworks like ThalamusDB to

deconstruct complex queries into more manageable processing steps for efficient processing.

Data Processing Frameworks using Deep Neural Models. While related works such as

SeeSaw [31], Symphony [7], VIVA [22], and TASTI [21] utilize deep neural models for various

data processing and query-answering tasks, ThalamusDB distinctively supports queries involving

natural language predicates on multi-modal data using zero-shot models. Evidenced by significant
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Fig. 16. Impact of model accuracy on ThalamusDB. Comparison between ThalamusDB bounds
using models of varying accuracy against query results from ground truth labels.

speed-ups in experiments, ThalamusDB also demonstrates pronounced efficiency through its

use of approximate query processing, compared to exact processing systems like MindsDB [30],

EvaDB [17], and SQLFlow [40]. Other recently proposed frameworks on top of neural models often

focus on video data processing [8, 11, 19, 22, 25].

Thresholds for Classification. Informed by studies on multi-label classification [13, 38], Tha-

lamusDB uses thresholds to assign classes to instances. In multi-label classification, it is customary

to compute relevance scores for label-instance pairs and then assign labels whose scores exceed a

threshold value [13]. ThalamusDB is designed to serve the needs of a single user and thus assumes

that the user has the best knowledge of what they wish to classify as True. Hence, ThalamusDB

determines the score threshold per natural language predicate by soliciting a small number of

labeling requests from the user.

Approximate Query Processing. ThalamusDB relates to a large body of prior work on ap-

proximate query processing [6]. Contrary to approaches employing data sampling [1–3, 12, 32, 33]

including ABAE [20], ThalamusDB utilizes deterministic approximation methods [4, 15, 27, 34],

ensuring 100% confidence in its result bounds. ABAE requires a proxy model per predicate (to do

better than random sampling), which calculates approximate scores for the predicate and is much

cheaper to evaluate compare to oracle models. In contrast, ThalamusDB does not rely on proxy

models.

9 CONCLUSION
ThalamusDB is a deterministic approximate query processing system for running complex queries

on multi-modal data. It extends a relational database system to support natural language predicates

on image, audio, and text data. In our experiments on real-world data sets from YouTube, Craigslist,

and Netflix, we demonstrate that ThalamusDB is significantly more efficient than several baselines,

including MindsDB and ABAE.
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