
SpareLLM: Automatically Selecting Task-Specific

Minimum-Cost Large Language Models under

Equivalence Constraint

SAEHAN JO, Cornell University, USA
IMMANUEL TRUMMER, Cornell University, USA

We introduce SpareLLM, Selecting Passable And Resource-Efficient LLMs, a novel LLM framework designed
to minimize the inference costs (i.e., resource-efficient) of large-scale NLP tasks while ensuring sufficient
result quality (i.e., passable). It enables users to specify an equivalence constraint in terms of the equivalence
of outputs to those of the most powerful LLM. SpareLLM then generates results that deviate from the outputs
of this LLM only with a probability below a user-defined threshold. SpareLLM employs a profiling phase
that evaluates the performance of multiple LLMs to identify those that meet the user-defined equivalence
level. It optimizes the tradeoff between profiling overheads and the anticipated cost savings resulting from
profiling. Moreover, SpareLLM further reduces inference costs by strategically leveraging a mix of LLMs. Our
experiments on five real-world datasets show that SpareLLM achieves significant cost savings, up to 8.6×,
while generating equivalent outputs in 90% of cases compared to GPT-4-Turbo. Compared to recent LLM
cascading baselines, SpareLLM demonstrates a superior tradeoff between cost and accuracy, accounting for
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1 Introduction

The rapid advancement and deployment of Large Language Models (LLMs) have started a new era of
artificial intelligence (AI). The capabilities of AI systems have significantly improved across a variety
of natural language processing (NLP) tasks. Companies such as OpenAI [30] and Anthropic [32]
have been at the forefront, offering LLMs as services to enable users to build intelligent, automated
solutions. However, deploying these models comes with substantial costs, especially for large-scale
inference. In recent years, there has been a notable trend in LLM development toward increasing
the number of parameters to boost performance [15, 20]. The expansion in model size has directly
contributed to higher inference costs, making it more expensive for end-users as well.
Service providers often offer a variety of LLM options. For instance, OpenAI provides models

such as GPT-4, GPT-3.5, Davanci, and Babbage [30]. Similarly, Google offers four sizes of its Gemini
model: Ultra, Pro, Flash, and Nano [13]. These LLMs exhibit heterogeneous performance and costs,
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Fig. 1. Costs of OpenAI LLMs for the sentiment classification task on the IMDB benchmark.

in which a more powerful LLM is inevitably more expensive. The cost difference between these
LLMs can span several orders of magnitude, as illustrated in Figure 1. However, for users, it is
difficult to choose the right model for their NLP tasks, especially when there are no ground truth
labels as a reference. Consequently, users tend to default to the most powerful LLM, resulting in
unnecessarily high costs. To improve the accuracy-cost tradeoff, the variation in costs and quality
among LLMs warrants a strategic approach to selecting the most appropriate model for a given task.
For that, we introduce SpareLLM (Selecting Passable And Resource-Efficient LLMs), a framework
aimed at improving the efficiency of inference while providing equivalence guarantees.

Our goal is to minimize the cost of using LLMs for large-scale inference while preserving output
quality. For certain NLP tasks, smaller models can often deliver results that are nearly identical to
those of larger models. Specifically, we focus on selecting the least expensive model that produces
outputs equivalent to the most powerful LLM, with a probability exceeding a user-defined threshold
and confidence level. We refer to this most powerful LLM as the reference LLM. SpareLLM takes
as input a task-specific question, a set of input instances, a user-defined equivalence constraint,
and a confidence level. Given a collection of LLMs with varying performance and costs, SpareLLM
generates outputs that match the reference LLM, ensuring equivalent outputs with a probability that
meets the specified equivalence and confidence level. Later, we demonstrate that this equivalence
guarantee also establishes a lower bound on the accuracy of the outputs of SpareLLM.
SpareLLM comprises two main phases: profiling and application. The profiling phase aims

to gather information on the equivalence of each LLM by comparing its outputs to those of the
reference model. Once sufficient information is collected, SpareLLM transitions to the application
phase, where LLMs that meet (or closely approach) the equivalence criteria are used to process
the remaining instances in a cost-efficient manner. Profiling comes with a cost because it involves
processing the same item with multiple LLMs, including the reference model. Therefore, SpareLLM
employs a strategic approach to choose the right amount of profiling, balancing the costs of profiling
against the anticipated savings in the application phase.
In the profiling phase, SpareLLM gathers data on each LLM to assess its equivalence for the

given NLP task. The aim is to identify LLMs whose outputs consistently align with those of the
reference LLM, adhering to the user-defined equivalence constraint at the specified confidence level.
To achieve this, SpareLLM executes all available LLMs on the same input instance and compares
their outputs with that of the reference LLM. SpareLLM then iteratively accumulates more data by
processing more items. This process is modeled as a series of Bernoulli trials, allowing SpareLLM to
calculate binomial proportion confidence intervals at the given confidence level for the equivalence
of each LLM. If the lower confidence interval bound of an LLM meets or exceeds the equivalence
threshold, it is considered to have satisfied the equivalence constraint. This LLM can then be used in
place of the reference LLM for subsequent LLM inferences during the application stage. Conversely,
if the upper confidence interval bound falls below the equivalence threshold, it is deemed unsuitable
for use. Profiling stops when the cheapest LLM that satisfies the equivalence constraint is found.
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Profiling can be costly as it processes the same item with multiple LLMs. To address this, Spar-
eLLM employs an early termination criterion, halting the profiling phase early if additional profiling
is anticipated to be wasteful. SpareLLM assesses the benefit of additional profiling by weighing
the extra costs of evaluating more items against the increased savings during the application
phase. Estimating these expected costs is non-trivial, given that the true equivalence of each LLM
remains unknown. SpareLLM only observes samples of input instances, knowing how many of
the processed items are identical to those of the reference LLM. Hence, SpareLLM models the true
equivalence as a binomial proportion under the binomial distribution. Based on this probabilistic
approach, SpareLLM calculates the expected cost of profiling additional items. If the anticipated
costs of further profiling are projected to exceed its benefits, SpareLLM halts the profiling process
and moves on to the application phase.

A straightforward approach to the application phase involves employing the most affordable LLM
that still meets the equivalence guarantees. However, further cost reductions can be achieved by
leveraging a combination of multiple LLMs, even those whose individual equivalence does not meet
the equivalence constraint. By strategically combining more affordable, less accurate LLMs with
more expensive, more accurate ones, it is possible to further maximize cost savings. At the start of
the application phase, SpareLLM distributes the remaining inference workload over available LLMs
to minimize the overall cost, while adhering to the user-defined equivalence constraint. SpareLLM
formulates this minimization problem as a mixed integer linear program (MILP), incorporating
two key constraints: equivalence and confidence level. The equivalence constraint ensures that
the collective equivalence across all inputs meets the given criteria. Similarly, the confidence
level constraint requires that the confidence level aggregated from all deployed LLMs reaches the
specified minimum. The solution to this MILP problem determines the ratios of the remaining input
instances each LLM should process during the application phase.

In our experimental evaluation, we measure the cost savings of SpareLLM on NLP tasks using
five real-world datasets: MMLU [14], IMDB [24], SMS-Spam [4], AgNews [43], and HellaSwag [41].
We employ multiple OpenAI LLMs, including gpt-4-turbo-2024-04-09, gpt-3.5-turbo-instruct, gpt-
3.5-turbo-1106, davinci-002, and babbage-002. Compared to GPT-4-Turbo, with an equivalence
constraint of ≥ 90%, SpareLLM achieves cost savings of 1.2×, 8.6×, 4.5×, 7.2×, and 1.4× for
MMLU, IMDB, SMS-Spam, AgNews, and HellaSwag, respectively. Compared to two recent baselines,
LLMCascade [40] and FrugalGPT [8], SpareLLM offers a superior cost-accuracy tradeoff across all
benchmarks, dominating 91.1% of the points on the Pareto curve. We also experiment with Llama
models (3B, 8B, 70B, 405B), where SpareLLM dominates 83.8% of the Pareto curve. In summary, the
original contributions of this paper are as follows:

• We introduce SpareLLM, a novel framework that minimizes the cost of LLM inference tasks
while providing equivalence guarantees. This enables users to trade result quality for reduced
costs.
• We present a profiling scheme to evaluate the equivalence of LLMs in comparison to a
reference LLM, along with an early termination criterion that effectively balances profiling
overheads against future savings.
• We detail our method for strategically leveraging multiple LLMs with varying performance
and costs, maximizing cost savings while meeting an equivalence constraint.
• We empirically evaluate SpareLLM on real-world datasets using OpenAI and Llama models,
demonstrating significant cost savings and its ability to adapt to various equivalence targets.
We compare SpareLLM to two recent baselines, LLMCascade and FrugalGPT, highlighting
its superior cost-accuracy tradeoff.
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The remainder of this paper is organized as follows. Section 2 introduces our formal problem
model and Section 3 gives an overview of the SpareLLM framework. Section 4 describes the
profiling phase of SpareLLM in more detail. Section 5 describes the early termination criterion for
profiling. Section 6 describes the application phase of SpareLLM. We report experimental results
in Section 7. We discuss related work in Section 8 before we conclude in Section 9.

2 Formal Model

SpareLLM targets the following scenario.

Target Scenario (LLMs with Varying Performance and Costs). The performance of LLMs varies
according to their sizes [15, 20]. Service providers often offer a range of LLMs with varying sizes,
leading to differences in performance and cost.

The costs of higher-performing LLMs increase substantially with their performance levels. For
instance, OpenAI charges $0.0015 per input token for GPT-3.5 (turbo-0613), compared to $0.03 for
GPT-4 (0613), resulting in a cost difference of 20×. Consequently, users find it challenging to decide
which LLM to use for a specific task, especially in common scenarios where ground truth labels
are not available as a benchmark. Using the most expensive LLM is the safest choice in terms of
output quality but incurs significant costs. On the other hand, opting for a cheaper and smaller
LLM might render the outputs unusable.

Using large language models is expensive. However, there are tasks where significantly smaller
models generate almost equivalent output to larger ones. Our goal is to select the cheapest model
that generates equivalent output to the reference model (i.e., the model whose output is assumed
to be the most reliable, typically the most expensive model at the same time) with a probability
above a user-defined threshold with a user-specified confidence level.

Definition 1 (⟨𝛿,𝛾⟩-Equivalence). Given a reference LLM𝑚, an LLM framework is ⟨𝛿,𝛾⟩-equivalent
if it generates outputs identical to those of the reference LLM with a probability of 1 − 𝛿 at a
confidence level of 𝛾 .

SpareLLM solves the following LLM inference problem.

Definition 2 (Task-Specific LLM Inference with ⟨𝛿,𝛾⟩-Equivalence Guarantees). Given a question
𝑞, inputs 𝐼 , a user-defined equivalence constraint 𝛿 , and a confidence level 𝛾 , our goal is to generate
outputs𝑂 by leveraging LLMs𝑀 with varying performance and costs. These outputs are equivalent
to those of the reference LLM𝑚 in 100 · (1 − 𝛿)% of cases at a confidence level of 𝛾 .

As stated above, SpareLLM produces outputs with equivalence guarantees. We distinguish
between the equivalence metric and the accuracy metric. Equivalence is measured relative to the
outputs of the reference LLM, whereas accuracy is measured against the (hidden) ground-truth
labels. By leveraging our equivalence guarantees, we derive a lower bound on the accuracy of the
outputs of SpareLLM in relation to the accuracy of the reference LLM𝑚. The proof follows directly
from the fact that the outputs 𝑂 of SpareLLM are equivalent to those of the reference LLM𝑚 in
100 · (1 − 𝛿)% of cases.

Theorem 1 (Accuracy Bounds of SpareLLM). The outputs𝑂 of SpareLLM with ⟨𝛿,𝛾⟩-equivalence
guarantees differ in accuracy from the reference LLM𝑚 by at most 100 · 𝛿% at a confidence level
of 𝛾 . In other words, if the accuracy of the reference LLM𝑚 is 𝜅, the accuracy 𝜅 of SpareLLM is
bounded by |𝜅 − 𝜅 | ≤ 100 · 𝛿 with confidence 𝛾 .
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Fig. 2. Overview of SpareLLM.

// Generate outputs𝑂 for a question 𝑞 from inputs 𝐼 using LLMs𝑀 , ensuring that at least 100 · (1− 𝛿)% of
the outputs are consistent with those from the reference LLM𝑚 with a confidence level of 𝛾 .

1: function SpareLLM(𝑀,𝑚,𝑞, 𝐼 , 𝛿,𝛾 )
// Profile equivalence of LLMs.

2: ⟨𝑀,𝑂⟩ ← Profile(𝑀,𝑚,𝑞, 𝐼 , 𝛿,𝛾)
// Calculate the ratio of items processed during profiling.

3: 𝑟 ← |𝑂 |/|𝐼 |
// Remove items processed during profiling.

4: 𝐼 ← {𝑖 ∈ 𝐼 |�𝑜 : ⟨𝑖, 𝑜⟩ ∈ 𝑂}
// Process remaining items based on LLM profiles.

5: 𝑂 ← 𝑂 ∪ Apply(𝑀,𝑞, 𝐼, 𝛿,𝛾, 𝑟 )
6: return 𝑂

Algorithm 1. The SpareLLM framework.

3 SpareLLM Framework

Figure 2 presents an overview of the SpareLLM framework. SpareLLM is designed to minimize the
cost of LLM inference on a large number of inputs for a given task, while satisfying user-defined
equivalence constraints. At its core, the framework features a task-specific selection of LLMs with
equivalence guarantees. We provide equivalence guarantees of outputs against the reference model,
which is typically the most powerful and expensive LLM.

Algorithm 1 describes SpareLLM at a high level of abstraction. It takes a question 𝑞, a set of
inputs 𝐼 , a reference LLM𝑚, a set of LLMs with varying costs𝑀 , a target equivalence 1 − 𝛿 , and a
confidence level 𝛾 . SpareLLM produces outputs 𝑂 for the question 𝑞 on inputs 𝐼 , ensuring that the
outputs differ from those of the reference model in no more than 100 · 𝛿% of cases with confidence
𝛾 . SpareLLM consists of two phases: profiling and application. The main purpose of profiling is to
estimate the probability of output equivalence for each LLM relative to the reference LLM. Based
on this information, we process the remaining items (after profiling) to maximize cost savings
while satisfying the user-defined equivalence constraint.

We present three variants of SpareLLM, each adding a new feature to the preceding variant:
1) ProfileAll, 2) ProfileSmart, and 3) ModelMix. All versions of SpareLLM share the same
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Table 1. LLM𝑚 and its attributes.

Attribute Semantics

𝑚.𝑛 Number of processed items using𝑚
𝑚.𝑒 Number of processed items whose outputs are

equivalent to those of the reference model𝑚
𝑚.𝑐 Average cost of processing a single item using𝑚,

which is updated as more items are processed
𝑚.𝑠 Status of𝑚: Unknown, Valid, Invalid

// Profile LLMs𝑀 by evaluating whether their outputs for question 𝑞 from inputs 𝐼 are equivalent to those
of the reference LLM𝑚 until sufficient information is obtained. The stopping criterion is based on the
equivalence constraint 𝛿 and confidence level 𝛾 .

1: function Profile(𝑀,𝑚,𝑞, 𝐼 , 𝛿,𝛾 )
// Initialize status of each LLM to unknown.

2: ∀𝑚 ∈ 𝑀 :𝑚.𝑠 ← Unknown
// Update status of the reference LLM to valid.

3: 𝑚.𝑠 ← Valid
// Start profiling and store outputs of the reference LLM.

4: 𝑂 ← ∅
5: for all 𝑖 ∈ 𝐼 do

// Process item with the reference LLM𝑚.
6: 𝑜 ←𝑚(𝑞, 𝑖)
7: 𝑂 ← 𝑂 ∪ {⟨𝑖, 𝑜⟩}

// Process item with cheaper LLMs and check equivalence.
8: for all𝑚 ∈ {𝑚′ ∈ 𝑀 |𝑚′ .𝑠 = Unknown} do
9: 𝑚.𝑛 ←𝑚.𝑛 + 1
10: 𝑜 ←𝑚(𝑞, 𝑖)
11: if 𝑜 = 𝑜 :
12: 𝑚.𝑒 ←𝑚.𝑒 + 1

// Update LLM status based on equivalence of their outputs.
13: 𝑀 ← EvalModels(𝑀,𝛿,𝛾)

// Number of remaining items to process.
14: 𝑛 ← |{𝑖 ∈ 𝐼 |�𝑜 : ⟨𝑖, 𝑜⟩ ∈ 𝑂}|

// Stop profiling if condition is met.
15: if TerminateProfile(𝑀,𝑚, 𝛿,𝛾, 𝑛) :
16: break
17: return ⟨𝑀,𝑂⟩

Algorithm 2. Profile LLMs to find models satisfying the equivalence constraint.

high-level structure, as shown in Algorithm 1. The first version, SpareLLM-ProfileAll, intro-
duces the profiling phase, where we collect information on the equivalence of each available
LLM. After profiling, it selects the most cost-efficient LLM, which is believed to meet the equiva-
lence constraint with adequate confidence, to process the remaining items. The second version,
SpareLLM-ProfileSmart, builds upon the first by evaluating the potential savings from profiling
and by terminating profiling early when further profiling is considered wasteful. The final version,
SpareLLM-ModelMix, enhances the application phase by selecting a combination of multiple
models that together satisfy the user-defined equivalence constraints for processing the remaining
items. We provide more details in the following sections.
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// Given profiled LLMs𝑀 , terminate profiling if a valid LLM is as cheap as any LLM with unknown status.
1: function TerminateProfile[ProfileAll](𝑀, _, _, _, _)

// Find valid LLM with the smallest cost.
2: 𝑚 ← argmin{𝑚∈𝑀 |𝑚.𝑠=Valid}𝑚.𝑐

// Terminate if a valid LLM is as cheap as any unknown LLM.
3: if 𝑚.𝑐 ≤ min{𝑚∈𝑀 |𝑚.𝑠=Unknown}𝑚.𝑐 :
4: return True
5: return False

Algorithm 3. Terminate profiling if found cheapest LLM that satisfies the equivalence constraint.

// Evaluate the status of each LLM𝑚 ∈ 𝑀 by calculating binomial confidence intervals with confidence 𝛾 ,
based on the number of processed items𝑚.𝑛 and the number of items with equivalent outputs𝑚.𝑒 . An
LLM is invalid if its equivalence upper bound falls below the equivalence threshold 1 − 𝛿 , and valid if its
lower bound meets or exceeds the threshold.

1: function EvalModels(𝑀,𝛿,𝛾 )
2: for all𝑚 ∈ {𝑚′ ∈ 𝑀 |𝑚′ .𝑠 = Unknown} do

// Compute binomial confidence intervals.
3: ⟨𝑙, 𝑢⟩ ← BinomCI(𝑚.𝑛,𝑚.𝑒,𝛾)

// LLM is invalid if upper bound equivalence is too low.
4: if 𝑢 < 1 − 𝛿 :
5: 𝑚.𝑠 ← Invalid

// LLM is valid if lower bound equivalence is sufficiently high.
6: if 𝑙 ≥ 1 − 𝛿 :
7: 𝑚.𝑠 ← Valid
8: return𝑀

Algorithm 4. Evaluate models as valid or invalid based on binomial confidence intervals.

4 ProfileAll: Profiling Models Exhaustively

The key feature of SpareLLM-ProfileAll is the profiling phase. SpareLLM-ProfileAll profiles
all LLMs to determine whether each model meets or falls short of the user-defined equivalence
threshold at the specified confidence level. For that, we introduce three possible status values for
LLMs based on their current profile. A model is considered Valid if we have sufficient information
to be confident that it meets the equivalence constraint. A model is deemed Invalid if we are
confident that it fails to meet the equivalence constraint. The status of an LLM is Unknown if there is
not enough information to either accept or reject the LLM as satisfying the equivalence constraint.
The profiling process ends when there is a Valid LLM as cost-efficient as any LLM with Unknown
status. That is, we have identified the most affordable LLM that meets the equivalence constraint.

Algorithm 2 illustrates the profiling phase in more detail. First, we initialize the status of each LLM
(except the reference LLM) to Unknown. Next, we evaluate input items using the reference model as
well as the other cheaper LLMs with Unknown status. We compare their outputs and keep track of
the number of items processed and the number of items whose outputs are equivalent to those of
the reference model. Then, we update the status of each LLM to either Valid or Invalid if we have
gathered sufficient information using the EvalModels function, as presented in Algorithm 4. We
provide more details in the following paragraph. Lastly, we stop profiling, when the termination
criterion described in Algorithm 3 is met. Profiling is terminated based on the current profiles of
LLMs, specifically when there is a Valid LLM whose cost is lower than or equal to that of any
LLM with Unknown status. This termination condition guarantees that we have identified the most
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// Given profiled LLMs𝑀 , question 𝑞, and remaining inputs 𝐼 , process remaining items using the cheapest
LLM that satisfies the equivalence constraint.

1: function Apply[ProfileAll, ProfileSmart](𝑀,𝑞, 𝐼, _, _, _)
// Find cheapest LLM satisfying equivalence constraint.

2: 𝑚 ← argmin{𝑚∈𝑀 |𝑚.𝑠=Valid}𝑚.𝑐

// Process remaining items.
3: 𝑂 ← ∅
4: for all 𝑖 ∈ 𝐼 do
5: 𝑜 ←𝑚(𝑞, 𝑖)
6: 𝑂 ← 𝑂 ∪ {⟨𝑖, 𝑜⟩}
7: return 𝑂

Algorithm 5. Single-model application.

cost-efficient LLM satisfying the user-defined equivalence constraint. Table 1 summarizes the LLM
profile properties, used in Algorithm 2 and the following algorithms.
Algorithm 4 describes the process of evaluating the status of each LLM𝑚 by calculating the

binomial confidence interval for its equivalence. Here, we assume running an LLM on instances
is a Bernoulli process, where the output of an instance could either match or differ from that of
the reference model. The BinomCI function in Algorithm 4 employs the Clopper-Pearson exact
method [10] to compute the binomial confidence intervals for LLM𝑚. We denote the lower and
upper bounds of the confidence interval by 𝑙 and 𝑢, respectively. If the upper bound of the model
equivalence falls below the equivalence threshold (i.e.,𝑢 < 1−𝛿), the model𝑚 is considered Invalid
for processing the remaining items. In contrast, if the lower bound of the model equivalence is
higher than or equal to the equivalence threshold (i.e., 𝑙 ≥ 1 − 𝛿), then the status of𝑚 is updated to
Valid. If neither of these conditions is satisfied, we continue profiling𝑚 in the subsequent iteration.
Figure 9 in the experimental section illustrates the development of confidence intervals on the
equivalence of each LLM during the profiling phase.

Next, Algorithm 5 outlines the application phase of SpareLLM-ProfileAll. During this phase,
we select the most cost-effective LLM among those identified as Valid (which may include the
reference LLM).We then process each of the remaining items using the selected LLM. This procedure
ensures that we leverage a cost-efficient solution while adhering to the equivalence guarantees
established during the profiling phase. As described in the last line of Algorithm 1, the outputs
generated during this phase are combined with the outputs from the profiling phase and are
presented to the user. We denote different versions of algorithms for SpareLLM variants using
square brackets following the function name, as shown in Algorithm 5.
We briefly discuss extensions to NLP tasks where a comparison of outputs for exact match (as

in line 11 of Algorithm 2) is misleading. For example, in text summarization, the likelihood of
different LLMs producing exactly identical outputs is quite small. One potential solution involves
using a more sophisticated metric, such as a distance function comparing two texts, to assess the
equivalence of the outputs. However, implementing a non-binary scoring function would require
redesigning the framework, as it currently employs a Bernoulli process model. As an alternative,
we can map a numerical metric to a binary result using a threshold. Another solution might be
to utilize an LLM to compare the two outputs for semantic matching, making it applicable to any
open-ended generation task.

5 ProfileSmart: Restricting Profiling Overheads

SpareLLM-ProfileSmart introduces a feature that terminates profiling early if further evaluation
is expected to be wasteful. Profiling involves running both the reference LLM, which is typically the
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// Given profiled LLMs𝑀 , reference LLM𝑚, equivalence constraint 𝛿 , confidence level𝛾 , and the remaining
𝑛 items, terminate profiling if further profiling is expected to be wasteful (or a valid LLM is as cheap as
any LLM with unknown status).

1: function TerminateProfile[ProfileSmart](𝑀,𝑚, 𝛿,𝛾, 𝑛)
// Terminate if a valid LLM is as cheap as any unknown LLM.

2: if TerminateProfile[ProfileAll](𝑀) :
3: return True

// Find current cheapest LLM satisfying equivalence constraint.
4: 𝑚 ← argmin{𝑚∈𝑀 |𝑚.𝑠=Valid}𝑚.𝑐

// Compute the expected cost if profiling terminates at this point.
5: 𝑐 ← 𝑛 ·𝑚.𝑐

// Store expected costs for varying numbers of profiled items.
6: 𝑘 = 1
7: while 𝑘 ≤ 𝑛 :

// Compute the expected cost if profiling exactly 𝑘 more items.
8: 𝑐𝑘 ← Cost(𝑘,𝑀,𝑚,𝑚, 𝛿,𝛾, 𝑛)
9: 𝑘 ← 2 · 𝑘

// Terminate if further profiling is expected to be wasteful.
10: if 𝑐 ≤ min𝑘 𝑐𝑘 :
11: return True
12: return False

Algorithm 6. Terminate profiling if further profiling is expected to be wasteful.

most expensive, and the other LLMs on the same input instance. Our hope is that the cost of using
the reference LLM is offset by the savings from employing a less expensive LLM for processing
the remaining items after profiling. However, profiling costs can outweigh the cost savings when
a large number of items are needed to validate an LLM with Unknown status as either Valid or
Invalid. Therefore, we estimate the expected cost savings from profiling additional items and
terminate early if the projected savings are not positive.
For example, suppose a user applies an equivalence constraint of 1 − 𝛿 = 0.9, and the true

equivalence of one of the cost-efficient LLMs is also 0.9 (which is unknown during profiling). In this
case, SpareLLM may be unable to validate this LLM as either Valid or Invalid for a large number
of profiled items, as neither the lower nor the upper bound of the confidence interval meets the
equivalence threshold of 1 − 𝛿 = 0.9. By terminating profiling early, SpareLLM-ProfileSmart
avoids excessive profiling when further effort is unlikely to benefit the application phase.
Algorithm 6 illustrates the newly added termination criterion based on expected cost savings.

First, we calculate the expected cost of using the most cost-efficient LLM among the current set of
Valid LLMs to process the remaining items. For that, we multiply the number of remaining items by
the unit cost (refer to𝑚.𝑐 in Table 1) of the cheapest Valid LLM. This serves as a baseline, assuming
we cease profiling at this juncture and proceed to the application phase. Next, we assess the impact
of profiling more items on the overall cost. Specifically, we calculate the expected costs for different
values of 𝑘 , where 𝑘 represents the number of additionally profiled items. We do not know a priori
which number of profiled items will yield the optimal balance between profiling overheads and the
cost savings in the application phase. Hence, we start with 𝑘 = 1 and incrementally double its value
up to the number of remaining items. This exponential scheme is reasonable, given that profiling
too many items would be wasteful, and the search should concentrate on the range with smaller
values. Finally, we compare the lowest among the costs of profiling additional items against the
cost of halting profiling at this point. We terminate profiling if setting 𝑘 = 0 minimizes expected
costs.
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The Cost function in Algorithm 6 calculates the expected cost of profiling LLMs for exactly
𝑘 more items, followed by the application phase. That is, we continue profiling for 𝑘 additional
items and then process remaining items based on the newly collected information. To compute the
expected cost, we first need to determine for each LLM𝑚 with Unknown status (i.e.,𝑚.𝑠 = Unknown)
whether𝑚 will eventually be considered Valid after profiling for 𝑘 more items. We express the
probability that LLM𝑚 will be evaluated as Valid as the following:

Pr(𝑚.𝑠 = Valid|𝑘, 𝛿,𝛾)
Next, we assign a sort order to LLMs based on their unit costs (since the same prompt is used for

all LLMs, this effectively amounts to ordering the LLMs based on their per-token costs). Among the
LLMs with Unknown status, we label the LLM with the smallest unit cost as𝑚1, the one with the
second smallest unit cost as𝑚2, and so on. Based on this ordering, if𝑚1 is evaluated to be Valid,
it will be used during the application phase due to its smallest unit cost. If𝑚1 is not Valid, then
the LLM𝑚2 with the next smallest unit cost will be considered. Namely, this ordering represents
the sequence in which the LLMs will be considered during the application stage. Lastly, assuming
independence between LLMs, we can formulate the expected cost as follows. For simplicity, we
denote the probability that LLM𝑚𝑖 is evaluated as Valid by 𝑝𝑖 = Pr(𝑚𝑖 .𝑠 = Valid|𝑘, 𝛿,𝛾).

Cost(𝑘,𝑀,𝑚,𝑚, 𝛿,𝛾, 𝑛) = 𝑘 (𝑚.𝑐 +
∑︁
𝑖

𝑚𝑖 .𝑐)

+ (𝑛 − 𝑘)
∑︁
𝑖

(∏
𝑗<𝑖

(1 − 𝑝 𝑗 )
)
· 𝑝𝑖 ·𝑚𝑖 .𝑐

+ (𝑛 − 𝑘)
(∏

𝑖

(1 − 𝑝𝑖 )
)
·𝑚.𝑐

(1)

The first term, 𝑘 (𝑚.𝑐 + ∑𝑖𝑚𝑖 .𝑐), represents the cost of profiling 𝑘 additional items using the
reference LLM𝑚 alongside the LLMs with Unknown status {𝑚𝑖 }. The second term accounts for the
cost of processing the remaining (𝑛 − 𝑘) items using the cheapest LLM among those newly verified
as Valid. The third term addresses the scenario where none of the LLMs are evaluated to be Valid
and thus rendering the profiling wasteful. By summing these terms together, we derive the expected
cost of profiling exactly 𝑘 more items and processing the remaining items in the application phase.
To calculate the expected cost formula, we need to determine the probability of an LLM being

Valid after profiling 𝑘 more items. An LLM is evaluated as Valid if the lower bound of the binomial
confidence interval on its equivalence is greater than or equal to the equivalence threshold 1 − 𝛿
with confidence 𝛾 . Thus, we obtain:

Pr(𝑚.𝑠 = Valid|𝑘, 𝛿,𝛾) = Pr(𝑙𝑚 ≥ 1 − 𝛿)
where 𝑙𝑚 is the lower bound of the binomial confidence interval (with confidence 𝛾 ) for LLM𝑚

after profiling 𝑘 additional items. We now want to compute the binomial confidence interval after
profiling 𝑘 more items. Recall that profiling an LLM𝑚 reveals that after𝑚.𝑛 items are processed,
𝑚.𝑒 items produce outputs equivalent to the reference model. Based on this current information,
the number of processed items is calculated as the sum of 𝑘 and the number of currently profiled
items𝑚.𝑛. For LLM𝑚, among the 𝑘 newly profiled items, we denote the number of items with
the same outputs as the reference model by 𝑒𝑚 . Similar to the number of processed items, the
number of conforming items is given as the sum of 𝑒𝑚 and 𝑚.𝑒 . The confidence level is given
by 𝛾 . Thus, the lower bound 𝑙𝑚 of the binomial confidence interval is derived from the function:
BinomCI((𝑘 +𝑚.𝑛), (𝑒𝑚 +𝑚.𝑒), 𝛾 ). As a result, we can solve the inequality 𝑙𝑚 ≥ 1 − 𝛿 for 𝑒𝑚 to find
the smallest value of 𝑒𝑚 (which we denote by 𝑒∗𝑚) that satisfies the following condition:

BinomCI((𝑘 +𝑚.𝑛), (𝑒𝑚 +𝑚.𝑒), 𝛾).Lower ≥ 1 − 𝛿
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By treating the number of conforming items 𝑒𝑚 as a random variable e, we rewrite the probability
of an LLM being Valid after profiling 𝑘 additional items as:

Pr(𝑚.𝑠 = Valid|𝑘, 𝛿,𝛾) = Pr(𝑙𝑚 ≥ 1 − 𝛿) = Pr(e ≥ 𝑒∗𝑚)

Random variables are represented by symbols in bold font. If given the true equivalence of LLM𝑚

when evaluated on all items as 𝑎, we can compute this probability using the binomial distribution.
The random variable e follows the binomial distributionwith parameters𝑘 and𝑎 as: e ∼ Binom(𝑘, 𝑎).
Therefore, by denoting the cumulative distribution function (CDF) of this binomial distribution as
𝐵(𝑥) = Pr(e ≤ 𝑥), we get the probability as:

Pr(e ≥ 𝑒∗𝑚 |𝑎) = 1 − 𝐵(𝑒∗𝑚 − 1)

However, the challenge is that we do not know the true equivalence 𝑎 of LLM𝑚. We instead rely
on the observations from profiling,𝑚.𝑛 and𝑚.𝑒 , to estimate the true equivalence as 𝑎 =𝑚.𝑒/𝑚.𝑛.
Then, under the same assumptions as those used in the Wald interval (based on the central limit
theorem) [5], we approximate the estimation error using a Gaussian distribution as follows:

𝑎 − 𝑎√︁
𝑎(1 − 𝑎)/𝑚.𝑛

∼ Norm(0, 1)

That is, the random variable a, which models the true equivalence 𝑎, follows a Gaussian distribution
as the following:

a ∼ Norm(𝜇 = 𝑎, 𝜎2 =
𝑎(1 − 𝑎)
𝑚.𝑛

)

The intuition behind this formalization is that as we collect more information (i.e., profile more
items), the variance of the error decreases due to the term 1

𝑚.𝑛
. In other words, as the sample size

increases, it becomes more likely that the sample mean 𝑎 accurately represents the true equivalence
𝑎.

Finally, we compute the probability of LLM𝑚 being Valid after processing 𝑘 additional items
by integrating over the possible range of 𝑎 ∈ [0, 1]. By denoting the probability density function
(PDF) of this normal distribution as 𝑓 (𝑥) = Pr(a = 𝑥), we obtain:

Pr(e ≥ 𝑒∗𝑚) =
∫ 1

0
Pr(e ≥ 𝑒∗𝑚 |𝑎) Pr(𝑎) 𝑑𝑎

=

∫ 1

0
(1 − 𝐵(𝑒∗𝑚 − 1)) 𝑓 (𝑎) 𝑑𝑎

where 𝐵(𝑥) is the CDF of Binom(𝑘, 𝑎) and 𝑓 (𝑥) is the PDF of Norm(𝑎, 𝑎 (1−𝑎)
𝑚.𝑛
). We can now compute

𝑝𝑖 in Equation 1 and use the function to calculate expected costs. Figure 10 in the experimental
section illustrates the expected costs of profiling additional items, including the profiling overheads
and the savings anticipated in the application phase.

We briefly discuss the impact of the independence assumption from Equation 1 on the effective-
ness of SpareLLM. In practice, LLMs can be positively correlated, meaning for instance that the
cheapest model producing the reference answer for an intrinsically “easy” task implies that other
models produce the reference answer as well. If models have complementary strengths, negative
correlation (meaning that one model producing the reference answer makes other models less
likely to do so) is also possible. In such cases, SpareLLM misses opportunities to gain information
due to the independence assumption, possibly increasing profiling phase unnecessarily. However,
an unjustified independence assumption does not impact the equivalence guarantees of SpareLLM.
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// Given profiled LLMs𝑀 , question𝑞, remaining inputs 𝐼 , and the ratio of items processed during profiling 𝑟 ,
process remaining items using multiple LLMs to minimize cost while satisfying the equivalence constraint
𝛿 with a confidence level 𝛾 .

1: function Apply[ModelMix](𝑀,𝑞, 𝐼, 𝛿,𝛾, 𝑟 )
// Find ratio per LLM.

2: {𝑟𝑚}𝑚∈𝑀 ← ComputeRatios(𝑀,𝛿,𝛾, 𝑟 )
// Split remaining items based on ratios.

3: {𝐼𝑚}𝑚∈𝑀 ← PartitionByRatios(𝐼 , {𝑟𝑚})
// Process remaining items.

4: 𝑂 ← ∅
5: for all𝑚 ∈ 𝑀 do
6: for all 𝑖 ∈ 𝐼𝑚 do
7: 𝑜 ←𝑚(𝑞, 𝑖)
8: 𝑂 ← 𝑂 ∪ {⟨𝑖, 𝑜⟩}
9: return 𝑂

Algorithm 7. Multiple-models application.

The application phase of SpareLLM-ProfileSmart is identical to that of SpareLLM-ProfileAll.
As described in Algorithm 5, we select the Valid LLM with the lowest unit cost and apply it to the
remaining items. The distinction between the two variants of SpareLLM lies in the profiling phase,
where SpareLLM-ProfileSmart carefully evaluates the tradeoff between profiling overheads and
application savings.

6 ModelMix: Selecting Model Combinations

SpareLLM-ModelMix improves the application phase by leveraging all LLMs to maximize cost
savings. Previously, in Algorithm 5, we employ a single LLM to process the remaining items in the
application phase. This earlier method misses a potential opportunity for additional cost savings.
Consider an LLM that is more cost-efficient but has an equivalence lower bound just below the
equivalence threshold. Such slight shortfall in equivalence disqualifies the LLM as a valid option
for application in the previous method. However, recognizing that its equivalence is close to the
user-defined threshold, SpareLLM-ModelMix proposes a novel approach. The main idea involves
combining this LLM with an LLM with a higher equivalence. By partitioning the processing of
remaining items between the more economical LLM and a more expensive, higher-equivalence
LLM, we can realize further cost reductions.

Algorithm 7 describes the novel approach for the application phase. At its heart is the ComputeRatio
function, which determines the percentage of remaining items that each LLM should process. This
calculation is based on solving a mixed integer linear program, with further details provided in the
subsequent paragraphs. We then partition the remaining items according to the determined ratios
and process them using the respective LLMs. Due to this careful partitioning, we ensure that the
generated outputs, in aggregate, meet the equivalence constraint at the designated confidence level.
We provide a detailed explanation of the ComputeRatio function. Our objective is to minimize

the cost of processing the remaining items while adhering to the equivalence constraint. To achieve
this, we focus on minimizing the cost function below, where 𝑖 indexes all available LLMs:

min
∑︁
𝑖

𝑐𝑖𝑥𝑖

where 𝑐𝑖 is the unit cost of an LLM𝑚𝑖 and 𝑥𝑖 ∈ [0, 1] is the ratio of items processed by model𝑚𝑖 .
The ratios 𝑥𝑖 should sum up to one:

∑
𝑖 𝑥𝑖 = 1.
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There are two key constraints associated with this minimization problem: 1) equivalence con-
straint and 2) confidence level constraint. We need to guarantee that, after processing all items,
we satisfy the equivalence threshold 1 − 𝛿 with confidence 𝛾 . To specify these constraints, we
first introduce a separate confidence level 𝛾𝑖 for each LLM𝑚𝑖 . The main idea is that the combined
confidence of these individual confidence levels 𝛾𝑖 should be greater than or equal to the confidence
constraint 𝛾 . As a result, assuming independence between confidence levels, we get the confidence
level constraint as follows: ∏

𝑖

𝛾𝑖 ≥ 𝛾 (2)

Here, without loss of generality, we say that LLMs (except for the reference model) exhibit zero
equivalence lower bound for a 100% confidence level.
Then, we specify the equivalence constraint based on the equivalence lower bound of each

LLM𝑚𝑖 . First, we compute the lower bound 𝑙𝑖 on the equivalence of LLM𝑚𝑖 , using the binomial
confidence intervals with confidence 𝛾𝑖 . That is, for each LLM𝑚𝑖 , given the number of processed
items,𝑚𝑖 .𝑛, and the number of items whose outputs conform with the reference LLM,𝑚𝑖 .𝑒 , we
calculate the lower bound from the function BinomCI(𝑚𝑖 .𝑛,𝑚𝑖 .𝑒, 𝛾𝑖 ). Now, we need to guarantee
that the final equivalence satisfies the given equivalence constraint. In other words, we want the
accumulated equivalence over all items to be at least the same as the equivalence threshold. We
temporarily denote this equivalence threshold by 𝛼 instead of the previously used 1 − 𝛿 (since its
value slightly differs from 1 − 𝛿 , a distinction we will explain shortly). Given the equivalence lower
bound 𝑙𝑖 per LLM𝑚𝑖 , we specify the equivalence constraint as:∑︁

𝑖

𝑙𝑖𝑥𝑖 ≥ 𝛼 (3)

When computing the final equivalence over all items, we should also take into account the
items that we processed during the profiling phase (which we processed using the reference LLM).
In that, we use a slightly refined version of the equivalence threshold (instead of 𝛼 = 1 − 𝛿) in
this optimization problem. Note that the equivalence of the reference LLM is one, as we define
equivalence in terms of consistency with the outputs of the reference model. Denoting by 𝑟 the
ratio of items processed in the profiling phase to the total number of items, we solve the following
equation to get the refined equivalence threshold 𝛼 :

1 · 𝑟 + 𝛼 (1 − 𝑟 ) = 1 − 𝛿 ⇒ 𝛼 = 1 − 𝛿

1 − 𝑟
We solve this minimization problem for 𝑥𝑖 to find the optimal ratios for distributing the remaining

items to LLMs. However, solving this problem directly is difficult due to the non-elementary natural
of computing quantiles (e.g., Gauss error function if using a normal approximation). That is, it
is hard to express the equivalence lower bounds 𝑙𝑖 as an elementary function of other variables.
Instead, we define a fixed set of potential confidence levels {𝛾 𝑗 } where each level is indexed by 𝑗

(instead of 𝑖). Then, we introduce a binary variable 𝑦𝑖 𝑗 ∈ {0, 1} that indicates whether the LLM𝑚𝑖

operates under the confidence level 𝛾 𝑗 . We assign at most one confidence level per LLM, thereby
introducing the following constraint: ∀𝑖 : ∑𝑗 𝑦𝑖 𝑗 ≤ 1. In our implementation, we utilize a range of
confidence levels starting from the user-defined confidence level 𝛾 up to one, with an increment of
0.01. For instance, if a user specifies a confidence level of 0.95, we consider potential confidence
levels 𝛾 𝑗 ∈ {0.95, 0.96, 0.97, 0.98, 0.99, 1}. Now, we reformulate the two constraints in Equations 2
and 3.
First, we rewrite the equivalence constraint in Equation 3. Since we specify predefined values
{𝛾 𝑗 } for confidence levels, we can compute the equivalence lower bound 𝑙𝑖 𝑗 for each combination of
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LLM𝑚𝑖 and confidence level 𝛾 𝑗 . Now, we replace the term 𝑙𝑖 in Equation 3 using the new variables:
𝑙𝑖 =

∑
𝑗 𝑙𝑖 𝑗𝑦𝑖 𝑗 . Note that, due to the constraint on 𝑦𝑖 𝑗 , only one of 𝑦𝑖 𝑗 can have a value of one for a

fixed 𝑖 . As a result, we reformulate Equation 3 as the following:∑︁
𝑖 𝑗

𝑙𝑖 𝑗𝑥𝑖𝑦𝑖 𝑗 ≥ 1 − 𝛿

1 − 𝑟 (4)

Second, we rewrite the confidence level constraint by replacing 𝛾𝑖 using the new variables 𝛾 𝑗 and
𝑦𝑖 𝑗 . The confidence level 𝛾𝑖 of LLM𝑚𝑖 can be expressed as: 𝛾𝑖 =

∏
𝑗 (1− (1−𝛾 𝑗 )𝑦𝑖 𝑗 ). The term inside

the product has a value of one when 𝑦𝑖 𝑗 = 0 and otherwise 𝛾 𝑗 when 𝑦𝑖 𝑗 = 1. Thus, we reformulate
Equation 2 as follows: ∏

𝑖 𝑗

(1 − (1 − 𝛾 𝑗 )𝑦𝑖 𝑗 ) ≥ 𝛾 (5)

In order to formulate this minimization problem as a mixed integer linear program (MILP), we
convert the product in Equation 5 into a summation. By applying logarithmic function to both
sides, we obtain: ∑︁

𝑖 𝑗

ln(1 − (1 − 𝛾 𝑗 )𝑦𝑖 𝑗 ) ≥ ln𝛾

Since 𝑦𝑖 𝑗 is binary, we have ln(1− (1−𝛾 𝑗 )𝑦𝑖 𝑗 ) = 0 if 𝑦𝑖 𝑗 = 0 and ln(1− (1−𝛾 𝑗 )𝑦𝑖 𝑗 ) = ln𝛾 𝑗 if 𝑦𝑖 𝑗 = 1.
That is, we arrive at the following equality:

ln(1 − (1 − 𝛾 𝑗 )𝑦𝑖 𝑗 ) = 𝑦𝑖 𝑗 ln𝛾 𝑗

Therefore, we rewrite the confidence level constraint as:∑︁
𝑖 𝑗

𝑦𝑖 𝑗 ln𝛾 𝑗 ≥ ln𝛾 (6)

In summary, based on the reformulated constraints in Equations 4 and 6, we solve the following
MILP problem:

min
∑︁
𝑖

𝑐𝑖𝑥𝑖

subject to ∑︁
𝑖 𝑗

𝑙𝑖 𝑗𝑥𝑖𝑦𝑖 𝑗 ≥ 1 − 𝛿

1 − 𝑟 ,∑︁
𝑖 𝑗

𝑦𝑖 𝑗 ln𝛾 𝑗 ≥ ln𝛾,

∑︁
𝑖

𝑥𝑖 = 1,

and
∀𝑖 :

∑︁
𝑗

𝑦𝑖 𝑗 ≤ 1

where 𝑥𝑖 ∈ [0, 1] and 𝑦𝑖 𝑗 ∈ {0, 1}.

7 Experimental Evaluation

We describe the experimental setup in Section 7.1 and present the experimental results in Section 7.2.
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Table 2. Overview of benchmarks.

Dataset Task #Instances #Tokens

MMLU [14] Multiple-Choice Question 14,042 128.0
IMDB [24] Sentiment Classification 50,000 331.7
SMS-Spam [4] Spam Detection 5,574 60.8
AgNews [43] Topic Classification 127,600 95.9
HellaSwag [41] Commonsense Inference 10,042 214.4

7.1 Experimental Setup

Benchmarks. We evaluate SpareLLM using five well-established real-world datasets, summarized
in Table 2. The table provides details about the task, the number of instances, and the average number
of prompt tokens per instance. First, the MMLU benchmark [14] is a multiple-choice question
answering dataset that tests knowledge across various topics, such as mathematics, history, and law.
We use the test set, consisting of 14,042 instances, for our evaluation. Following prior work [29, 33],
we use the same prompt but apply zero-shot instead of few-shot learning. Second, the IMDB
benchmark [24] is a widely recognized dataset for binary sentiment classification. It consists of
50,000 movie reviews from the Internet Movie Database (IMDB). For our evaluation, we utilize all
instances from both the training and testing sets. Third, the SMS-Spam Collection benchmark [4] is
a dataset collected for the purpose of spam detection in Short Message Service (SMS). It comprises
a collection of messages labeled as spam or legitimate with a total of 5,574 instances. Fourth, the
AgNews benchmark [43] is a dataset designed for news categorization tasks, containing 120,000
training samples and 7,600 test instances. Each entry is a news article categorized into one of four
classes: World, Sports, Business, or Science/Technology. We again use all available instances for our
evaluation. Fifth, the HellaSwag benchmark [41] is a natural language inference dataset designed
to evaluate commonsense reasoning. We use the validation set, consisting of 10,042 instances,
since the test set does not include ground-truth labels. Using the tokenizer for GPT-4-Turbo, on
average, the numbers of tokens per instance are 128.0, 331.7, 60.8, 95.9, and 214.4 for MMLU, IMDB,
SMS-Spam, AgNews, and HellaSwag, respectively.
Large Language Models. In our experiments, we employ a range of OpenAI [30] models as

our available LLMs. Specifically, we use the following set of models: gpt-4-turbo-2024-04-09, gpt-
3.5-turbo-instruct, gpt-3.5-turbo-1106, davinci-002, and babbage-002. The costs per 1,000 input
tokens for these models are $0.01, $0.0015, $0.001, $0.002, and $0.0004, respectively. We designate
GPT-4-Turbo (gpt-4-turbo-2024-04-09) as the reference model for our experiments. In addition, we
utilize Llama 3 models [12] hosted by the provider Together AI [3]. The following four model sizes
are used: 3B, 8B, 70B, and 405B (with the 405B serving as the reference model). Their costs per 1,000
tokens are $0.00006, $0.00018, $0.00088, and $0.0035, respectively. We employ the same prompt
template across all LLMs.
Baselines. We compare SpareLLM against two recently proposed LLM frameworks for cost-

efficient inference: LLMCascade and FrugalGPT. LLMCascade [40] is a cascading pipeline that
uses the consistency of the responses as a proxy for question difficulty. The core idea is to query an
LLM multiple times on the same question to measure its answer consistency. The pipeline requires
users to set a threshold for answer consistency, cascading to a stronger LLM if a weaker LLM fails
to meet the threshold. For LLMCascade, we sort the five LLMs by their input token cost and create
the cascading pipeline. As in [40], we vary the threshold from 0.4 (i.e., accept if 40% of responses are
identical) to 1 (i.e., accept only if all responses are identical). FrugalGPT [8] is an LLM framework
that also leverages model cascading for efficient inference. It enables users to specify a target cost
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budget for processing a single input for the given NLP task. Using a training set with ground truth
labels, it learns the score thresholds for each LLM in the cascading pipeline to satisfy the target
cost budget. During inference, FrugalGPT returns the answer from the first LLM that satisfies
the learned threshold. In our experiments, we provide FrugalGPT with 100 ground truth labels
for training with no additional cost. In our ablation study, we evaluate all variants of SpareLLM,
including SpareLLM-ProfileAll, SpareLLM-ProfileSmart, and SpareLLM-ModelMix. Given
that SpareLLM-ModelMix represents the final variant of the framework, we subsequently refer to
it as SpareLLM.

Evaluation Setup. To reduce evaluation costs, we evaluate all instances from the benchmarks
on all LLMs and store their responses. In addition, we record the cost and response time for each
instance. We then evaluate SpareLLM and the baselines using these stored responses. In line with
its requirements, we collect multiple responses per input instance with a non-zero temperature
to support LLMCascade. Consistent with prior work [40], we set the temperature to 0.4 and the
number of responses to 20. Since the order of instances can influence the outcome, we run SpareLLM
10 times per setting with different random orderings and report the average values unless noted
otherwise. Throughout the experiments, we use a confidence level of 𝛾 = 0.95. For the equivalence
constraint 𝛿 , we test a wide range of settings from 0.02 to 0.9. For example, an equivalence constraint
of 𝛿 = 0.02 implies that SpareLLM produces outputs consistent with those of GPT-4-Turbo in 98%
of cases with a 95% confidence level. Based on Theorem 1, this also indicates that the accuracy
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Table 3. Minimum and mean equivalence (%) of SpareLLM compared to GPT-4 across 10 runs for

varying equivalence thresholds 1 − 𝛿 , along with the number of runs failing to meet the constraint.

MMLU
1 − 𝛿 Min Avg #F

0.96 95.6 97.5 1
0.92 91.4 94.9 1
0.88 87.8 92.3 1
0.84 84.0 88.8 1
0.8 81.1 86.1 -
0.76 77.0 82.4 -
0.72 65.1 78.0 1
0.68 65.7 72.9 1
0.64 63.2 68.0 1
0.6 60.9 65.5 -

IMDB SMS-Spam AgNews HellaSwag
1 − 𝛿 Min Avg #F Min Avg #F Min Avg #F Min Avg #F

0.98 96.6 98.7 1 98.3 99.1 - 98.8 99.1 - 98.3 99.1 -
0.96 93.6 97.3 2 96.4 97.8 - 96.5 97.7 - 96.8 98.0 -
0.94 93.9 95.2 1 93.6 96.1 1 95.1 95.9 - 95.1 96.8 -
0.92 93.0 94.2 - 91.6 94.4 2 93.1 93.2 - 93.4 95.7 -
0.9 92.7 93.6 - 90.7 91.4 - 92.9 93.0 - 91.9 94.2 -
0.88 92.5 93.2 - 90.0 91.2 - 91.7 92.6 - 89.1 92.3 -
0.86 91.4 93.2 - 87.9 90.7 - 90.2 92.7 - 85.4 89.8 1
0.84 89.2 91.2 - 85.8 89.7 - 88.1 91.1 - 85.2 88.5 -
0.82 92.6 93.1 - 89.0 90.4 - 89.3 91.1 - 80.1 83.9 1
0.8 90.4 90.9 - 86.8 89.2 - 87.1 89.9 - 78.8 81.9 1

difference between SpareLLM and GPT-4-Turbo is within 2% with a 95% confidence level. As our
primary metric, we use cost savings, calculated as costbefore/costafter. For example, if GPT-4-Turbo
incurs a cost of $300 and SpareLLM incurs a cost of $30 on the same benchmark, this indicates a
cost reduction by 10×. The accuracy metric is computed based on the ground-truth labels, while
the equivalence metric is calculated by comparing the outputs to those of the reference LLM.

7.2 Experimental Results

Comparison against Baselines. Figure 3 shows the cost-accuracy tradeoff curves of SpareLLM,
LLMCascade, and FrugalGPT across all benchmarks and LLM collections, with the x-axis on a
logarithmic scale. Note that here we measure accuracy (against the ground-truth labels) instead of
equivalence. For SpareLLM, we vary the equivalence constraint from 0.02 to 0.9. For LLMCascade,
we set the consistency threshold from 0.4 to 1.0 as in [40]. We vary the cost budget for FrugalGPT
from $1 (i.e., effectively unbounded, as each input costs much less than a dollar) down to one-tenth
of the cost of using the reference model. SpareLLM Pareto-dominates LLMCascade and FrugalGPT
in most settings across all benchmarks, contributing to 91.1% and 83.8% of the points on the Pareto
curve for OpenAI and Llama models, respectively. For the same accuracy level, SpareLLM provides
cost savings of up to 3.4× and 7.4× compared to LLMCascade and FrugalGPT, respectively. Spar-
eLLM selects the minimum-cost LLM that satisfies the given equivalence constraint by evaluating
the difficulty of a specific task. In contrast, LLMCascade and FrugalGPT attempt to assess the
difficulty of each individual instance. When dealing with a large number of instances, SpareLLM
benefits from information gained during profiling, while the baselines incur redundant overheads
across instances. In addition to offering a better cost-accuracy tradeoff, another key advantage of
SpareLLM over LLMCascade and FrugalGPT is that it provides users with accuracy guarantees
(based on Theorem 1). In contrast, it is unclear how a specific threshold value in LLMCascade
translates to the final accuracy. Interestingly, for Llama models on the IMDB benchmark, the
accuracy of FrugalGPT slightly decreases as the cost increases (at the end) because the Llama 3 70B
model has higher accuracy than the Llama 3 405B model.
Runtime Overhead. Figure 4 depicts the runtime overhead of SpareLLM compared to the

inference time of each LLM across all benchmarks, with the y-axis on a logarithmic scale. We
compute the inference time of an LLM by summing the response times for all instances in the
dataset. We measure the runtime overhead of SpareLLM by calculating its runtime excluding the
inference time of the LLMs. The overhead of SpareLLM is relatively small, less than ten seconds,
compared to the inference time of LLMs, which can extend to several hours.
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⟨𝜹,𝜸⟩-Equivalence Guarantees. Table 3 presents the minimum and mean equivalence (%) of
SpareLLM against the reference LLM across the ten runs for each benchmark and equivalence
constraint. If the minimum equivalence meets or exceeds the equivalence threshold, SpareLLM
produces outputs that satisfy the equivalence guarantees with respect to the reference model,
GPT-4-Turbo, in all ten runs. Additionally, Table 3 details the number of runs, out of ten, in which
the outputs of SpareLLM fail to meet the equivalence constraint. In most cases, the outputs
of SpareLLM comply with the equivalence constraint for all ten runs. Across all benchmarks
and equivalence constraints, merely 17 out of the 500 runs violate the equivalence constraint,
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corresponding to 3.4% of cases. This rate is consistent with the confidence level 𝛾 = 0.95 used in
our experiments.

Ablation Study. Figure 5 illustrates the costs associated with using GPT-4-Turbo and SpareLLM
variants under varying user-defined equivalence constraints. We vary the equivalence constraint
up to 0.4 for MMLU and up to 0.2 for IMDB, SMS-Spam, AgNews, and HellaSwag, dividing each
range into ten equally spaced values. All SpareLLM variants largely outperform GPT-4-Turbo
in terms of cost across all benchmarks. As the equivalence constraint 𝛿 is relaxed, SpareLLM
achieves greater cost savings. With the strictest equivalence constraint, SpareLLM achieves cost
savings of 1.1×, 1.3×, 1.1×, 1.1×, and 1.0× compared to GPT-4 for the MMLU, IMDB, SMS-Spam,
AgNews, and HellaSwag benchmarks, respectively. When the equivalence constraint is increased
to 𝛿 = 0.2 for MMLU and 𝛿 = 0.1 for IMDB, SMS-Spam, and AgNews, SpareLLM realizes greater
savings of 1.6×, 8.6×, 4.5×, 7.2×, and 1.4×, respectively. This trend demonstrates the efficiency of
SpareLLM in reducing costs as users impose less demanding equivalence requirements. We now
discuss the variants of SpareLLM. With each variant of SpareLLM introducing a new feature to
the preceding version, ProfileSmart improves upon ProfileAll by up to 2.8×, and ModelMix
improves upon ProfileSmart by up to 3.2×. When the equivalence of an LLM is close to the
equivalence threshold, ProfileAll struggles to conclusively accept or reject the LLM as satisfying
the equivalence requirement. As a result, ProfileAll incurs additional overheads from continuous
profiling without meeting the termination criterion. In contrast, ProfileSmart (and ModelMix)
can terminate early if further profiling is expected to be wasteful based on cost estimations (see
IMDB, 𝛿 = 0.6). Figure 6 clearly show this improvement by comparing the number of profiled
instances and the profiling cost of ProfileSmart with those of ProfileAll. Next, ModelMix
outperforms ProfileSmart, particularly when the equivalence of all LLMs (except the reference
LLM) is lower than or equal to the equivalence threshold (see IMDB, 𝛿 = 0.4). Even when the more
affordable LLMs fail to meet the equivalence constraint directly, ModelMix can leverage them in
combination with the more accurate but more expensive reference LLM.
Breakdown per LLM. Figure 7 (left) provides a detailed view of SpareLLM in terms of the

number of instances processed by each LLM. Here, the total number of instances processed by
LLMs may exceed the number of instances in the dataset due to profiling, where the same item is
processed using multiple LLMs. As the equivalence constraint 𝛿 is relaxed, SpareLLM seamlessly
transitions to utilizing LLMs that, while less accurate, are more cost-efficient. For instance, when
the equivalence constraint is stringent at 𝛿 = 0.02 (0.04 for MMLU), GPT-4-Turbo is responsible for
the majority of processing across all benchmarks. This aligns with expectations as the outputs of
SpareLLM may differ from those of GPT-4 in no more than 2% of instances. On the other hand,
with a more relaxed equivalence constraint of 𝛿 = 0.2 (0.4 for MMLU), the processing portion of
GPT-4-Turbo drops significantly to 1.4%, 0.1%, 0.7%, 0.1%, 9.9% for the MMLU, IMDB, SMS-Spam,
AgNews, and HellaSwag benchmarks, respectively. A key advantage of SpareLLM is its ability to
dynamically determine how many instances each LLM should process, while providing equivalence
guarantees as per the user-specified equivalence constraint 𝛿 and confidence level 𝛾 . Figure 7 (right)
also presents a breakdown of SpareLLM in terms of the cost per LLM. Although the number of
processed items remains similar, the overall cost decreases as the equivalence constraint 𝛿 is relaxed,
owing to the utilization of more cost-efficient LLMs.

Breakdown per Phase. Figure 8 presents a breakdown of SpareLLMwith respect to the profiling
and application phases. As before, we provide both the number of instances (left) and the inference
cost (right). SpareLLM dynamically adjusts the number of instances to profile based on whether
additional profiling is expected to benefit the application phase. For example, with 𝛿 = 0.1 for
SMS-Spam, SpareLLM profiles more instances compared to stricter equivalence constraints, which
might initially seem to increase the cost. However, as illustrated in the figure, the overall cost
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Fig. 7. Breakdown of SpareLLM in terms of the number of instances processed (left) and the cost

(right) per LLM.

decreases because SpareLLM leverages this additional information during the application phase to
utilize more cost-efficient LLMs.
Confidence Intervals on Equivalence. Figure 9 illustrates the lower and upper bounds of

confidence intervals on the equivalence of each LLM during the profiling phase. We present the
case where the equivalence threshold is set to 1 − 𝛿 = 0.8 for MMLU and 1 − 𝛿 = 0.9 for the other
datasets, marked in red on the y-axis.As more items are profiled and additional information is
collected, the confidence intervals narrow down further. If the upper confidence interval bound
of an LLM falls below the equivalence threshold (as illustrated for babbage-002 on IMDB), the
LLM is deemed Invalid, and this LLM is no longer profiled. Conversely, if the lower bound of the
interval surpasses the equivalence threshold, the LLM is considered Valid (as demonstrated for
gpt-3.5-turbo on IMDB). Profiling concludes upon identifying the most cost-efficient LLM with
Valid status (for IMDB and SMS-Spam) when further profiling is expected to be wasteful (for
MMLU, AgNews, and HellaSwag). The number of items processed for profiling is significantly less
compared to the total number of input instances across all benchmarks.
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Cost Estimation during Profiling. Figure 10 illustrates the expected costs associated with
profiling exactly 𝑘 additional items. It is important to note that these expected costs include the
impact of profiling on the anticipated costs of the subsequent application phase. Thus, we present
the expected costs for both the profiling and application phases, as well as the total costs. SpareLLM
enables the early termination of profiling, leveraging the cost estimations introduced in Section 5.
As 𝑘 increases exponentially, the expected costs display a clear pattern. As the number of profiled
items increases, the expected cost for profiling also increases. Conversely, the expected cost of the
application phase decreases as we gather more accurate information about the equivalence of LLMs.
Thus, the overall expected cost exhibits the following pattern. Initially, increasing the number of
profiled items reduces the associated expected costs until reaching a specific point. Beyond this
point, further increases in the number of profiled items lead to increased expected costs. This
pattern suggests the existence of an optimal 𝑘 , at which the balance between the costs of profiling
and the savings gained during the application phase is optimal. This optimal number 𝑘∗ is marked
with a red line in each plot. The benefits of profiling surpass its overheads up to a certain point, at
which sufficient information about LLMs has been acquired. Beyond this point, profiling additional
items yields little new information, making the costs of further profiling outweigh its benefits.
This experiment features the estimated expected costs of profiling more items after SpareLLM has
profiled 100 items. Here, we apply an equivalence constraint of 𝛿 = 0.2 for MMLU and 𝛿 = 0.1 for
the other datasets.
Varying Input Difficulty. Figure 11 illustrates the number of instances processed (left) and

the cost (right) of SpareLLM across varying input distributions. We divide the MMLU dataset into
easy and hard examples based on whether gpt-3.5-turbo-1106 correctly answers the question. Then,
we create new datasets, each containing 5,000 instances, with the ratio of hard inputs increasing
from 0% to 50%. The equivalence constraint is set to 𝛿 = 0.2. SpareLLM achieves greater cost
savings when the dataset predominantly consists of easier instances. This is because SpareLLM can
leverage cheaper models while satisfying the equivalence constraint. Interestingly, higher ratios of
hard inputs do not necessarily lead to more profiling. Instead, profiling may terminate early when
it becomes evident that cost-efficient LLMs are unlikely to meet the equivalence constraint.

8 Related Work

The Transformer architecture [36] revolutionized the field of natural language processing (NLP)
with significant improvements across multiple tasks. Building on the Transformer architecture, a
series of LLMs emerged, demonstrating state-of-the-art performance on various NLP tasks in both
zero-shot [22] and few-shot settings [6, 37]. The number of parameters in LLMs has significantly
increased along with their inference costs [8], as models with more parameters have shown
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Fig. 11. Breakdown of SpareLLM across varying input difficulty levels, showing the number of

instances processed (left) and the cost (right) per phase.

better performance [15, 20]. This has sparked interest in improving LLM inference efficiency [25],
with strategies including cascade models [8, 17, 40, 42], query routing [11, 16, 28], early exit
mechanisms [34, 35], caching results [44], batch prompting [9, 23], compressed LLMs [39], and
distributed inference [38].
LLMCascade [40] is an LLM framework that uses a cascading pipeline of LLMs with varying

costs, querying weaker LLMsmultiple times to determine if a stronger LLM is needed. FrugalGPT [8]
similarly employs LLM cascading but relies on ground truth labels to learn score thresholds for
cost-efficient processing. Hybrid LLM [11] and RouteLLM [28] also require a labeled training set
to train a router that selects the appropriate LLM for each input. In contrast, SpareLLM operates
without ground truth labels and features a unique, principled approach to systematically determine
how many items to process using the reference LLM. In general, model cascading and query
routing frameworks reduce costs by adjusting compute per input complexity. On the other hand,
SpareLLM targets scenarios where many input instances are evaluated for a common NLP task.
Hence, SpareLLM models the difficulty of the NLP task and selects appropriate LLMs at the task
level. Above all, SpareLLM provides equivalence guarantees on the generated outputs.

Instance-level profiling offers flexibility by dynamically adapting to varying input distributions.
However, it introduces additional overhead, such as assessing the instance difficulty, detecting
out-of-distribution inputs, and optimizing pipelines for each distribution, which often requires
a labeled training set. In contrast, task-level profiling, as in SpareLLM, simplifies this process by
identifying a cost-efficient LLM for the entire task through the evaluation of a fairly small number
of instances. However, it assumes a relatively homogeneous distribution, which may limit its
effectiveness in scenarios with highly diverse inputs. In the case of distribution shifts, SpareLLM
can be improved to periodically verify the confidence intervals of LLMs to ensure equivalence
guarantees.

SpareLLM is related to approximate query processing [7] in that it enables users to trade result
precision for reduced costs. A significant body of prior work [1, 2, 18, 19, 26, 27, 31] allows users to
specify an accuracy constraint in addition to their query. The IFocus algorithm [21] is relevant as
it regularly updates confidence intervals to generate approximate visualizations of large datasets.
Unlike these approaches that focus on relational data, SpareLLM is designed to process a large
number of NLP task instances.

9 Conclusion

SpareLLM is a framework designed to minimize the cost of large-scale LLM inference for NLP tasks,
while providing guarantees on the quality of its outputs. Through a novel profiling scheme and the
strategic use of multiple LLMs, SpareLLM enables users to achieve significant cost savings safely,
while ensuring high-quality results. Using OpenAI LLMs, our experimental evaluation across five
real-world datasets demonstrates its ability to dramatically reduce costs compared to GPT-4-Turbo
and LLM cascading baselines.
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