
Supervised Belief Propagation: Scalable
Supervised Inference on Attributed Networks

Jaemin Yoo
Seoul National University
Seoul, Republic of Korea

jaeminyoo@snu.ac.kr

Saehan Jo
Seoul National University
Seoul, Republic of Korea

naheas@snu.ac.kr

U Kang
Seoul National University
Seoul, Republic of Korea

ukang@snu.ac.kr

Abstract—Given an undirected network where some of the
nodes are labeled, how can we classify the unlabeled nodes with
high accuracy? Loopy Belief Propagation (LBP) is an inference
algorithm widely used for this purpose with various applications
including fraud detection, malware detection, web classification,
and recommendation. However, previous methods based on LBP
have problems in modeling complex structures of attributed
networks because they manually and heuristically select the most
important parameter, the propagation strength.

In this paper, we propose Supervised Belief Propagation (SBP),
a scalable and novel inference algorithm which automatically
learns the optimal propagation strength by supervised learning.
SBP is generally applicable to attributed networks including
weighted and signed networks. Through extensive experiments,
we demonstrate that SBP generalizes previous LBP-based meth-
ods and outperforms previous LBP and RWR based methods in
real-world networks.

I. INTRODUCTION

Given an attributed network whose edges have weights or
signs, how can we classify its nodes into different categories?
Node classification is a crucial task with many applications
including anomaly and fraud detection [1], [2], [3], [4], link
prediction [5], [6], [7], sign prediction [8], and recommenda-
tion [9]. Loopy Belief Propagation (LBP) [10], an inference
algorithm for probabilistic graphical models, has been widely
used for solving node classification problems. Intuitively, LBP
is based on the notion of guilt-by-association: if a user is a
drug-abuser, then it is likely that its neighbors are drug-abusers
as well. LBP propagates prior knowledge on observed nodes to
infer labels or states of unobserved nodes. Due to its simplicity
and generality, LBP has been widely used for solving real-
world problems including malware detection [2], [11], fraud
detection [1], [4], image processing [12], etc.

However, previous works on LBP have two main limita-
tions. First, they do not provide an algorithmic way of deter-
mining the propagation strength, which models the degrees of
association between adjacent nodes. Instead, heuristic methods
are applied to choose the value with no theoretical justification.
The difficulty of manually choosing the propagation strength
leads to using only a small number of parameters in LBP-based
methods: e.g., many existing works [2], [3], [4] use a single
heuristically determined propagation strength to uniformly
model all the edges in a network. Second, previous works
on LBP do not utilize rich information available in attributed
networks since choosing the propagation strength is difficult

and thus they need to simplify the networks. Although some
LBP-based methods were proposed to use the information in
attributed networks, they solely focus on specific types of
networks, not general ones [13], [9]. Furthermore, they do not
provide a way to choose the propagation strength as well. As
a result, this rich information is left unused, although it could
give useful insights on the identity of nodes in networks.

In this paper, we propose Supervised Belief Propagation
(SBP), a scalable inference algorithm for attributed networks
designed to overcome the limitations of previous LBP-based
methods. SBP learns optimal propagation strengths which had
to be chosen manually and heuristically in previous methods.
Moreover, SBP extends the model capacity compared to pre-
vious methods: SBP allows the use of multiple parameters to
consider rich features in attributed networks in determining the
propagation strengths. SBP outperforms state-of-the-art node
classification methods based on LBP and RWR (Random Walk
with Restart). Our main contributions are the following:

• Algorithm. We propose SBP, a scalable inference algo-
rithm for attributed networks. SBP automatically learns
optimal propagation strengths and reveals relative impor-
tance of each attribute. SBP is general enough to take any
attributed network as an input and model its attributes.

• Accuracy. SBP shows the highest accuracy in node clas-
sification, outperforming previous LBP and RWR based
methods. SBP provides up to 15.6% higher AUC in real-
world datasets as shown in Figure 1.

• Scalability. SBP is scalable to large networks, providing
linear running time and memory requirement with regard
to the number of edges.

The codes and datasets for this paper are publicly available.1
The rest of this paper is organized as follows: Section II
presents preliminaries. Section III proposes SBP and shows its
scalability. Section IV presents experimental results. Section V
introduces related works. We conclude the paper and give ideas
of future work in Section VI.

II. PRELIMINARIES

In this section, we describe preliminaries on Supervised
Belief Propagation (SBP). Symbols we use throughout this
paper are summarized in Table I. In Section II-A, we introduce

1http://datalab.snu.ac.kr/sbp

 0.5 0.55 0.6 0.65 0.7 0.75 0.8 0.85 0.9 0.95 1

AUC

LBP RBP SPP RWR M-RWR SBP (proposed)

 0.63

 0.67

 0.71

 0.75

 0.79

 0.83

AUC MAP P@20

(a) MovieLens

 0.46

 0.5

 0.54

 0.58

 0.62

 0.66

 0.7

AUC MAP P@20

(b) Epinions-R

 0.83

 0.85

 0.87

 0.89

 0.91

 0.93

 0.95

AUC MAP P@20

(c) Epinions-S
Fig. 1: Classification accuracies for all the datasets: (a) MovieLens, (b) Epinions-R, and (c) Epinions-S. SBP shows the highest
accuracies for all the datasets: up to 15.6% higher AUC, 12.6% higher MAP, and 15.0% higher P@20 compared to the best
existing methods. RWR shows a low AUC of 71.6% for Epinions-S, which is not shown in (c).

TABLE I: Table of symbols.

Symbol Definition

✓ij feature vector for edge (i, j)
w weight vector to be learned

sp, sn positive and negative states
P,N sets of positive and negative nodes
(·)

obs

observed nodes for the propagation step
(·)

trn

training nodes for the weight update step
✏ij propagation strength for edge (i, j)
mij normalized message for edge (i, j)
bi normalized belief for node i
�i normalized node potential for node i

m⇤
ij(·) unnormalized message for edge (i, j)

b⇤i (·) unnormalized belief for node i
E(·) cost function to be minimized
↵,�,� parameters for gradient update of w

⌘ number of recursive updates for @w

Loopy Belief Propagation (LBP). In Section II-B, we introduce
the edge potential table, which is widely used to make LBP-
based methods applicable to large real-world networks.

A. Loopy Belief Propagation

A pairwise Markov Random Field (MRF) is a set of discrete
random variables whose joint relationships are modeled as an
undirected graph. Given the variables X = (X

i

)

i2V

which are
modeled as a graph (V,E) where V and E represent the sets of
nodes and edges, respectively, the joint probability p(X = x)
is computed by multiplying all the potentials � and as

p(X = x) =
1

Z

Y

i2V

�
i

(x
i

)

Y

(i,j)2E

ij

(x
i

, x
j

),

where Z is a normalization constant. A node potential �
i

(x
i

)

represents an unnormalized probability of node i being in
state x

i

without considering the influences from other nodes.
An edge potential

ij

(x
i

, x
j

) represents a joint unnormalized
probability of nodes i and j being in states x

i

and x
j

.
LBP is an approximate algorithm to compute the marginal

distribution of a pairwise MRF by passing messages between
the variables [10], [14]. A message m⇤

ij

(x
j

) is an opinion
of node i about the probability of node j being in state x

j

.
LBP uniformly initializes all the messages and updates them
through iterations until they converge. Equation (1) shows how
to update m⇤

ij

(x
j

) at each iteration where N(i) denotes the

set of neighbors of node i. All the incoming messages from
N(i) except node j are multiplied to compute m⇤

ij

(x
j

).

m⇤
ij

(x
j

)
X

xi

�
i

(x
i

)
ij

(x
i

, x
j

)

Q
k2N(i)

m⇤
ki

(x
i

)

m⇤
ji

(x
i

)

(1)

LBP returns beliefs as a result. A belief b
j

(x
j

) is an approx-
imate marginal probability of node j being in state x

j

, which is
computed from the converged messages and then normalized.
Equation (2) shows how to compute the unnormalized beliefs
and then how to normalize them accordingly.

b
j

(x
j

) =

b⇤
j

(x
j

)

P
x

0
j
b⇤
j

(x0
j

)

where

b⇤
j

(x
j

) = �
j

(x
j

)

Y

i2N(j)

m⇤
ij

(x
j

)

(2)

A popular application of LBP is node classification whose
goal is to infer the states of unobserved nodes based on the
known states of observed nodes. LBP solves this by assigning
different node potentials to the nodes and then propagating the
messages. For instance, assuming random variables having two
states, LBP gives a node potential (0.9, 0.1) or (0.1, 0.9) to a
observed node based on its observed state. On the other hand,
LBP gives a node potential (0.5, 0.5) to the unobserved nodes.
LBP propagates the messages from the biased potentials of the
observed nodes and classifies the unobserved nodes. Although
it is not guaranteed, the messages often converge in a small
number of iterations for most real-world networks.

B. Edge Potential Table

LBP has been widely used in solving real-world problems
due to its simplicity and scalability [1], [4], [3]; running time
of LBP scales linearly with the number of edges. Nevertheless,
previous methods have difficulty in assigning edge potentials
because it requires too many parameters. Thus, a majority of
existing methods tend to simplify the models and assume that
all edges in a network have the same edge potentials, which are
represented by edge potential tables. The use of edge potential
tables makes such methods simple enough to be applicable to
large networks by reducing the number of parameters.

Given a real-world network modeled as a pairwise MRF, an
edge potential table is defined as a k⇥ k table where k is the

TABLE II: Edge potential table with propagation strength ✏ for
a binary network whose nodes are either positive or negative.

State positive negative

positive ✏ 1� ✏
negative 1� ✏ ✏

Fig. 2: Attributed network which contains two types of nodes
(users and items) and edges (trusts and reviews). The dashed
arrows represent trusts, and the solid arrows represent reviews
with ratings between 1 and 5.

number of states of its variables. Table II shows an example
of an edge potential table of a network whose nodes have two
states: positive and negative. Given a propagation strength ✏
between 0 and 1, the table denotes that the joint probability of
adjacent nodes is determined by ✏. Formally, the edge potential

ij

(x
i

, x
j

) for each edge (i, j) is given as follows:

ij

(x
i

, x
j

) =

(
✏, if x

i

= x
j

1� ✏, otherwise
(3)

It has been a challenging problem to choose the right value
of the propagation strength [3]. A common workaround is a
grid search which finds the best parameter from a finite set of
reasonable values by running the algorithm for each possible
case. For example, we choose ✏ in {0.6, 0.51, 0.501, 0.5001}.
However, such an approach restricts introducing more param-
eters since it takes exponential time in the number of param-
eters. Previous methods [9] use only one or two propagation
strengths for rich attributed networks although their attributes
contain meaningful information about the inference.

We introduce Figure 2 to further elaborate on the limitation
of the current model used in existing LBP-based methods. The
figure shows an attributed network which contains two types
of nodes (users and items) and edges (trusts and reviews). The
review edges contain ratings between 1 and 5, while the trust
edges have no additional information. Assuming that we want
to classify the items into recommended and not recommended
for a given user, it is impractical to find the best propagation
strengths for each type and rating using the grid search. The
typical approach is to simplify the edges by eliminating the
attributes. However, such simplification suffers from the loss
of rich information which leads to poor accuracy.

III. PROPOSED METHOD

In this section, we propose Supervised Belief Propagation
(SBP), a scalable inference algorithm for attributed networks
with the following improvements:

Algorithm 1: Supervised Belief Propagation
Input: attributed network G, sets P and N of positive

and negative nodes, and node potential �
Output: beliefs b for all nodes

1: P
obs

, P
trn

 randomly split P into two sets
2: N

obs

, N
trn

 randomly split N into two sets
3: w an initial weight vector
4: while convergence criterion of w is not met do
5: b,m propagate(w,P

obs

, N
obs

,�)
6: w weight update(w, b,m, P

trn

, N
trn

)

7: end while
8: b,m propagate(w,P,N,�)
9: return b

• SBP automatically learns optimal propagation strengths
which previous methods have manually chosen.

• SBP utilizes rich information of attributed networks by
considering these attributes in the message propagation.

After giving an overview of the algorithm in Section III-A,
we describe the details in the following sections. In Section
III-B, we introduce how to encode the attributes in attributed
networks. In Sections III-C, III-D, and III-E, we describe main
steps of SBP in detail. In Section III-F, we show space and
time complexities of the algorithm.

A. Overview

SBP is an inference algorithm which overcomes the limi-
tations of previous LBP-based methods and thus is generally
applicable to attributed networks. Given an attributed network
whose attributes are encoded as feature vectors, SBP learns
weights of the features to determine the propagation strengths;
edges with different feature vectors have different propagation
strengths depending on the learned weights. This enables SBP
to utilize rich information in attributed networks, resulting in
more accurate inference than existing methods.

SBP initializes a weight vector w and alternates two main
steps to train it. In the propagation step, SBP computes the
messages and beliefs based on the current w. This step is
similar to the standard LBP algorithm which uses fixed values
for the propagation strengths. In the weight update step, SBP
updates w based on the computed messages and beliefs so that
w moves toward a local optimum. These steps are described
in detail in Sections III-C and III-D, respectively.

The main idea of weight optimization is to train the weight
vector w so that the beliefs of nodes are in accordance with
their true states. For this purpose, given a set of nodes whose
true states are known, we hide the labels of some nodes to use
them as correct answers in training w. We call these nodes as
training nodes and the others as observed nodes. We use only
the observed nodes as evidence of the inference and only the
training nodes to update the weight vector.

Although the main ideas of SBP are generally applicable to
multi-label classification, we focus on a binary case due to its
simplicity. In binary classification, we assume that every node
has two possible states s

p

and s
n

, and we call a node positive
or negative if its state is known as s

p

or s
n

, respectively.

Fig. 3: Flowchart of SBP representing Algorithm 1. SBP splits
labeled nodes into observed and training, and then alternates
propagation and weight update steps until w converges. After
the convergence, SBP computes beliefs of all the nodes using
the learned w⇤ and returns them.

Algorithm 1 shows SBP. In lines 1 and 2, we split each set
of nodes into observed and training, as we discussed above,
in order to separate the nodes for the propagation and weight
update steps. In lines 3 to 7, we initialize w and then iteratively
update it until it converges. After the convergence, we compute
the beliefs using all the positive and negative nodes and return
them. Figure 3 shows a summary of the algorithm.

The stopping criterion in line 4 of Algorithm 1 for updating
w is either one of the following: 1) the difference between w
in consecutive iterations is within a small threshold, or 2) the
maximum number of iterations is reached. This criterion is
also used for the message updates in the propagation step.

B. Encoding Attributed Networks

We encode an attributed network as a directed graph where
each edge (i, j) contains a feature vector ✓

ij

generated from
the original attributes. SBP determines propagation strength
✏
ij

customized for edge (i, j) using its feature vector ✓
ij

and
the globally trained weight vector w. As there can be multiple
possible encodings for a single attributed network, choosing
a proper encoding ✓

ij

from the attributes is important for the
performance of the algorithm.

For instance, let us consider the attributed network in Figure
2, which is discussed in Section II-B. The network contains
two kinds of attributes: edge type and rating. While the edge
type attribute is naturally encoded as a binary vector of length
1, the rating can be encoded in various ways: 1) a continuous
vector of length 1 with the raw score or 2) a one-hot encoded
vector of length 5.

At first glance, the first encoding seems natural. However,
it is problematic in that discrete attributes are modeled as
a continuous integer. This assumes a strict linear scaling of
preferences where rating 5 is exactly 5 times higher than rating
1 although their exact correlations in the network are unknown.
On the contrary, the second separates all the ratings so that
each represents a distinctive evaluation. In SBP, which learns
different optimal weights for each feature element, the second
gives better results than the first one.

TABLE III: Two types of feature vectors with different en-
codings for the network of Figure 2. While the first encoding
assumes the linear correlation between the ratings, the second
makes SBP learn independent weights for each feature.

Edge Type Encoding 1 Encoding 2

Trust (1, 0) (1, 0, 0, 0, 0, 0)
Review with rating 1 (0, 1) (0, 1, 0, 0, 0, 0)
Review with rating 2 (0, 2) (0, 0, 1, 0, 0, 0)
Review with rating 3 (0, 3) (0, 0, 0, 1, 0, 0)
Review with rating 4 (0, 4) (0, 0, 0, 0, 1, 0)
Review with rating 5 (0, 5) (0, 0, 0, 0, 0, 1)

After encoding each attribute as a vector, we concatenate
them to generate the feature vectors. Table III shows two types
of feature vectors with different encodings for the network in
Figure 2. The first element represents the edge type as a binary
integer and the rest represent the rating.

C. Propagation Step

In the propagation step (lines 5 and 8 in Algorithm 1), the
messages and beliefs are computed based on the current weight
vector w. After the messages converge through iterations, the
beliefs are computed from the converged messages. The mes-
sage propagation in SBP have two main differences compared
to that in previous LBP-based methods: 1) the messages are
propagated with different strengths customized for the feature
vector of each edge and 2) computations of the messages and
beliefs are optimized for binary networks.

Propagation strength ✏
ij

which is customized for each edge
(i, j) is modeled as Equation (4). Its value is determined
by the inner product between the feature vector ✓

ij

of edge
(i, j) and the current weight vector w, and is interpreted as a
probability between 0 and 1. As we model ✏

ij

in this way,
we 1) easily consider both ✓

ij

and w in determining the
propagation strength, and 2) improve stability of the algorithm
by avoiding extreme values of ✏

ij

. It also can be considered
as a function of ✓

ij

given w as a parameter. Thus, its value
changes during the algorithm as w is updated at each iteration.

✏
ij

= (1 + exp(�✓T
ij

w))�1 (4)
Next, we describe efficient computations of SBP for binary

networks. We optimize Equations (1) and (2) of LBP assuming
a binary network whose nodes have two possible states: s

p

and
s
n

. As a result, we have Equations (5), (6), and (7) which are
more efficient. Note that the simplified equations lead to the
same results as those from the original equations.

First, we normalize the messages and use only the positive
ones. It gives the following advantages: 1) we avoid numerical
underflow when multiplying a lot of messages on high-degree
nodes, 2) it saves the cost of space to store both messages, and
3) it simplifies the equations. Resulting beliefs computed from
the converged messages remain the same because any constant
multiplied to the messages cancels out when we normalize the
beliefs. Equation (5) shows how to compute the normalized
message m

ij

from the unnormalized ones m⇤
ij

.
m

ij

= m⇤
ij

(s
p

)/(m⇤
ij

(s
p

) +m⇤
ij

(s
n

)) (5)
Then, using the normalized messages, unnormalized beliefs

b⇤
j

(s
p

) and b⇤
j

(s
n

) for each node j are computed as in Equation

Algorithm 2: propagate(·)
Input: weight vector w, sets P

obs

and N
obs

of positive
and negative observed nodes, and node potential �

Output: computed beliefs b and messages m
1: �

i

 0.5 for each node i not in P
obs

and N
obs

2: �
i

 � for each node i in P
obs

3: �
i

 1� � for each node i in N
obs

4: m
ij

 0.5 for each edge (i, j)
5: ✏

ij

 (1 + exp(�✓T
ij

w))�1 for each edge (i, j)
6: while convergence criterion of m is not met do
7: b compute beliefs using m and �
8: m compute messages using ✏, m, and b
9: end while

10: return b,m

(6), and then normalized as in Equation (2). Note that the node
potentials �

j

are normalized in the same way as the messages;
�
j

and 1� �
j

represent �
j

(s
p

) and �
j

(s
n

), respectively.
b⇤
j

(s
p

) = �
j

Y

i2N(j)

m
ij

b⇤
j

(s
n

) = (1� �
j

)

Y

i2N(j)

(1�m
ij

)

(6)

Lastly, we rewrite Equation (1) as follows. First, we replace
edge potential

ij

(x
i

, x
j

) by propagation strength ✏
ij

as
discussed in Section II-B; the difference is that we use cus-
tomized strength for each edge instead of the global strength.
Second, we replace the unnormalized messages m⇤

ij

(x
i

, x
j

)

by the normalized ones. Third, we replace the multiplications
of incoming messages by the pre-computed beliefs to avoid
duplicate calculations [15]. Resulting equations are given as
Equation (7).

m⇤
ij

(s
p

) ✏
ij

b
i

m
ji

+ (1� ✏
ij

)

1� b
i

1�m
ji

m⇤
ij

(s
n

) (1� ✏
ij

)

b
i

m
ji

+ ✏
ij

1� b
i

1�m
ji

(7)

Algorithm 2 shows a summary of the propagation step. In
lines 1 to 3, we initialize the node potentials. The normalized
potential � is given as a parameter. Node potentials for the
unobserved nodes are uniformly set to 0.5. In lines 4 to 5, we
initialize all the messages and propagation strengths. In lines
6 to 9, we iteratively update the messages until they converge.
In line 10, we return the computed messages and beliefs.

D. Weight Update Step

In the weight update step (line 6 in Algorithm 1), we update
the weight vector w using a gradient-based approach. First,
we define a cost function of w which we try to minimize. The
cost function should be defined in a way that its minimization
makes better classification. Second, we differentiate the cost
function with respect to w and compute the gradient. Finally,
we update w to the negative direction of the derivative.

The cost function E(w) is defined as Equation (8), which is
computed from the pairwise differences between the beliefs of
positive and negative training nodes. Given an increasing loss
function h, E(w) is minimized as the beliefs b

n

of negative

Algorithm 3: weight update(·)
Input: beliefs b, messages m, and sets P

trn

and N
trn

of
positive and negative training nodes

Output: updated weight vector w
1: b0 di↵erentiate(b,m)

2: w0 2�w
3: for p in P

trn

and n in N
trn

do
4: h (1 + exp(�d�1

(b
n

� b
p

)))

�1

5: w0 w0
+ d�1h(1� h)(b0

n

� b0
p

)

6: end for
7: return w �max{↵w0, �

|↵w0|↵w
0}

nodes are minimized and the beliefs b
p

of positive nodes are
maximized. An L2 regularization parameter � is introduced to
avoid overfitting and decrease the model complexity.

E(w) = �||w||2
2

+

X

p2Ptrn

X

n2Ntrn

h(b
n

� b
p

) (8)

We use the loss function h(x) = (1+exp(�x/d))�1 which
approximates the step function when d is small. It is known
that AUC (area under the ROC curve) of binary classification
is maximized when h is used as a loss function and d is small
enough [6], [16]. We set d to 0.0001.

Then, we differentiate the cost function as follows, where an
error term x = b

n

� b
p

is introduced to simplify the equation.
@h(x)/@x is easily computed since h(x) is a simple sigmoid
function of x. The problem is to compute the derivatives of
beliefs, which is discussed in Section III-E.

@E(w)

@w
= 2�w +

X

p2Ptrn

X

n2Ntrn

@h(x)

@x

✓
@b

n

@w
� @b

p

@w

◆

where
@h(x)

@x
= d�1h(x)(1� h(x))

Assuming we have the derivatives of beliefs, we differenti-
ate the cost function as w0

= @E/@w and update the weight
vector w, as shown in Equation (9). min{·, ·} selects the vector
whose L2 norm is smaller than the other. New parameters ↵
and � are introduced; ↵ is a step size that determines quality
and speed of the convergence, and � limits the L2 norm of
the gradient step to avoid a steep change.

w w �min

⇢
↵w0,

�

||↵w0||
2

↵w0
�

(9)

Algorithm 3 shows a summary of the weight update step. In
line 1, we differentiate the beliefs. In lines 2 to 6, we compute
the derivative of the cost function with regularization. In line
7, we update the weight vector and return the result.

E. Computing Derivatives for Weight Update Step

Here we describe how to approximately compute the deriva-
tives of the beliefs with regard to the weight vector (line 1 of
Algorithm 3). The problem is that the beliefs are not expressed
as closed-form functions of w since they are computed from
the messages which converge through iterations. Thus, we use
the chain rule to express @b

j

/@w as a function of @b
j

/@m
ij

and @m
ij

/@w for each neighboring node i, and then Lemma 1
to replace @b

j

/@m
ij

. Equation (10) shows the result.

@b
j

@w
=

X

i2N(j)

@b
j

@m
ij

@m
ij

@w

=

X

i2N(j)

b
j

(1� b
j

)

m
ij

(1�m
ij

)

@m
ij

@w

(10)

Lemma 1. Belief b
j

of node j is differentiated by an incoming
message m

ij

from a neighboring node i as

@b
j

@m
ij

=

b
j

(1� b
j

)

m
ij

(1�m
ij

)

.

Proof. We differentiate Equation (6) to get the derivatives of
the unnormalized beliefs b⇤

j

(s
p

) and b⇤
j

(s
n

) as

@b⇤
j

(s
p

)

@m
ij

=

b⇤
j

(s
p

)

m
ij

@b⇤
j

(s
n

)

@m
ij

= �
b⇤
j

(s
n

)

1�m
ij

.

Then, we differentiate the first part of Equation (2) to express
@b

j

/@m
ij

as a function of the above derivatives. After substi-
tuting the values, we get the equation in the lemma.

Next, we apply the chain rule again to express the message
derivative as Equation (11). This is not a closed-form solution
because the derivative terms in the form of @m

ij

/@w exist
in both sides of the equation. Unlike the messages which
converge through iterations in most real-world networks, the
derivatives are shown to diverge because of positive loops
existing in a cyclic network. Thus, we introduce a recursion
parameter ⌘ to limit the number of updates.

@m
ij

@w
=

@m
ij

@✏
ij

@✏
ij

@w
| {z }
base terms

+

X

k2N(i)\j

@m
ij

@m
ki

@m
ki

@w
| {z }

recursive terms

(11)

We separate the derivatives in the right hand side of Equa-
tion (11) into the base and recursive terms. The first base term
@m

ij

/@✏
ij

is computed from Lemma 2 and the second base
term @✏

ij

/@w is computed as ✏
ij

(1 � ✏
ij

)✓
ij

since ✏
ij

is a
simple sigmoid function of w. The coefficient @m

ij

/@m
ki

of
the recursive terms is computed from Lemma 3. As a result,
we get Equation (12):

@m
ij

@w
= k

1

(b
i

�m
ji

)✓
ij

+

X

k2N(i)\j

✏
ij

� k
2

k
3

@m
ki

@w
, (12)

where the following nonnegative constants k
1

, k
2

and k
3

are
introduced to simplify the equation:

k
1

= ✏
ij

(1� ✏
ij

)(b
i

+m
ji

� 2b
i

m
ji

)

�1

k
2

= m
ij

+m
ji

� 2m
ij

m
ji

k
3

= m
ki

(1�m
ki

)(b
i

+m
ji

� 2b
i

m
ji

)b�1

i

(1� b
i

)

�1.

Lemma 2. Message m
ij

of edge (i, j) is differentiated by the
propagation strength ✏

ij

of the same edge as

@m
ij

@✏
ij

=

b
i

�m
ji

b
i

+m
ji

� 2b
i

m
ji

.

Algorithm 4: di↵erentiate(·)
Input: beliefs b and messages m
Output: derivatives @b/@w of the beliefs

1: for each edge (i, j) do
2: (m0

ij

)

base

 ✏ij(1�✏ij)(bi�mji)

bi+mji�2bimji

3: z
ij

 ✏ij�mji�mij+2mijmji

bi+mji�2bimji

4: end for
5: m0

ij

 (m0
ij

)

base

for each edge (i, j)
6: for ⌘ times do
7: m00

ij

 bj(1�bj)

mij(1�mij)
m0

ij

for each edge (i, j)

8: for each edge (i, j) do
9: (m0

ij

)

new

 (m0
ij

)

base

+ z
ij

P
k2N(i)\j m

00
ki

10: end for
11: substitute m0

ij

with (m0
ij

)

new

for each edge (i, j)
12: end for
13: b0

j

P

i2N(j)

bj(1�bj)

mij(1�mij)
m0

ij

for each node j

14: return b0

Proof. We differentiate Equation (7) by ✏
ij

to get the deriva-
tives of the unnormalized messages m⇤

ij

(s
p

) and m⇤
ij

(s
n

):
@m⇤

ij

(s
p

)

@✏
ij

=

b
i

m
ji

� 1� b
i

1�m
ji

@m⇤
ij

(s
n

)

@✏
ij

= � b
i

m
ji

+

1� b
i

1�m
ji

.

Then, we differentiate Equation (5) to express @m
ij

/@✏
ij

as a
function of the above derivatives. After substituting the values,
we get the equation in the lemma.

Lemma 3. When nodes k and j are both neighbors of node
i, message m

ij

is differentiated by message m
ki

as
@m

ij

@m
ki

=

z
ij

b
i

(1� b
i

)

m
ki

(1�m
ki

)

,

where z
ij

= (✏
ij

�m
ji

�m
ij

+2m
ij

m
ji

)(b
i

+m
ji

�2b
i

m
ji

)

�1.

Proof. We differentiate Equation (7) by m
ki

to get the deriva-
tives of the unnormalized messages m⇤

ij

(s
p

) and m⇤
ij

(s
n

):
@m⇤

ij

(s
p

)

@m
ki

=

✏
ij

m
ji

@b
i

@m
ki

� 1� ✏
ij

1�m
ji

@b
i

@m
ki

=

✏
ij

�m
ji

m
ji

(1�m
ji

)

b
i

(1� b
i

)

m
ki

(1�m
ki

)

@m⇤
ij

(s
n

)

@m
ki

=

1� ✏
ij

�m
ji

m
ji

(1�m
ji

)

b
i

(1� b
i

)

m
ki

(1�m
ki

)

Then, we differentiate Equation (5) to express @m
ij

/@m
ki

as a function of the above derivatives. After substituting the
values, we get the equation in the lemma.

Algorithm 4 shows a summary of the differentiation process.
In lines 1 to 4, we compute the base terms in Equation (12)
and the coefficient z

ij

in Lemma 3. In line 5, we initialize the
message derivatives using the base terms. In lines 6 to 12, we
iteratively update the message derivatives ⌘ times. Specifically,
in line 7, we compute the recursive terms in Equation (12) to
avoid duplicate computations, and in lines 8 to 11, we update

all the message derivatives. In lines 13 to 14, we compute the
belief derivatives using the computed message derivatives.

F. Scalability

We show that time and space complexities of SBP are linear
with the number of edges in a given network. The complexities
are given by Lemmas 4 and 5. We have two variables T

1

and
T
2

representing the numbers of iterations. T
1

is the number
of iterations for the propagation step and is relatively small;
it does not exceed 10 for all the networks we use in the
experiments. T

2

is the number of weight updates and varies
from 20 to 100 depending on the network. Assuming the
number of training nodes are fixed, the term |✓||P

trn

||N
trn

|T
2

added in the time complexity can be considered as a constant.

Lemma 4. Space complexity of SBP is O(|✓||E|) where |✓| is
the number features and |E| is the number of edges.

Proof. The largest variables SBP needs to store are the mes-
sage derivatives. Since every edge has two derivatives of size
|✓| when comparing the old and new, the space complexity is
proportional to the number of edges and features.

Lemma 5. Time complexity of SBP is given as
O(((T

1

+ ⌘|✓|)|E|+ |✓||P
trn

||N
trn

|)T
2

),

where |✓| is the number of features, |E| is the number of edges,
T
1

is the number of iterations for the propagation step, ⌘ is
the number of derivative updates for the update step, |P

trn

|
and |N

trn

| are the number of positive and negative training
nodes, respectively, and T

2

is the number of weight updates.

Proof. Time complexity of the propagation step is O((|✓| +
T
1

)|E|) since all the messages are updated T
1

times. Time
complexity of the update step is O(|✓|(⌘|E| + |P

trn

||N
trn

|))
since the running time mostly depends on the computations of
message derivatives. We prove the lemma by summing them
up and multiplying T

2

as SBP alternates them T
2

times.

IV. EXPERIMENTS

In this section, we present experimental results of SBP to
answer the following questions:

• Q1. Accuracy (Section IV-B). How accurately does SBP
classify nodes in attributed networks?

• Q2. Learning process (Section IV-C). How accurately
does SBP find the optimal weights? How do values of
the cost function and AUC change during iterations?

• Q3. Scalability (Section IV-D). How does running time
of SBP scale with regard to the size of a network?

A. Experimental Settings

1) Datasets: We use three publicly available datasets which
are summarized in Table IV. Epinions-R [17] is a heteroge-
neous network which we introduced in Section II-B. It contains
two kinds of nodes (users and items) and edges (reviews and
trusts). The review edges connect users and items with ratings
between 1 and 5, while the trust edges connect only users with
no additional information. Epinions-S [8] is a signed social

TABLE IV: Summary of the datasets.

Dataset Nodes Edges Attributes

Epinions-R2 189,028 1,152,005 ratings and trusts
Epinions-S3 131,828 841,372 signs (trusts or distrusts)
MovieLens4 9,940 1,000,209 ratings (1 to 5)

network whose edges are either positive or negative. The sign
of an edge (u, v) indicates either a positive or negative feeling
of user u towards user v. MovieLens [18] is a bipartite review
network for movies from the users of MovieLens, whose edges
contain integer ratings between 1 and 5.

2) Encoding: We model the networks based on one-hot en-
coded feature vectors to make SBP learn independent weights
for the feature elements. The simplest network is Epinions-S
whose attributes (signs) are easily modeled as one-hot encoded
vectors of length 2. On the other hand, we have two factors to
consider in MovieLens: directions and ratings. We ignore the
directions of edges since the network is bipartite; the edges
represent undirected relationships between users and movies.
Then, we encode the ratings as one-hot encoded vectors of
length 5. Epinions-R is modeled as described in Section III-B.
The ratings are modeled as the same in MovieLens and an
additional element representing the edge type is added to the
vectors. As a result, the feature vectors are of length 6.

3) Competitors: We compare SBP with node classification
methods which are based on Loopy Belief Propagation (LBP)
and Random Walk with Restart (RWR). LBP is an inference
algorithm introduced in Section II, which is the basis of SBP.
RWR [19] is an algorithm to compute node relevance. Starting
from a seed node, it walks through other nodes and jumps back
to the seed node with a certain probability. As a result, nodes
near the seed node are likely to have high visiting probabilities
compared to the ones far way from the seed node. Since LBP
and RWR are both based on the notion of guilt-by-association,
they share common characteristics [20].

RBP [9] and SPP [13] are LBP-based methods for review
and signed networks, respectively. RBP uses the rating infor-
mation to assign different node potentials and neglects edges
with low ratings to ensure homophily relationships between
the nodes. SPP uses two edge potential tables to model
different propagation strengths of positive and negative edges.
M-RWR [21] is an RWR-based method for signed networks,
which runs RWR for each subgraph consisting of only positive
or negative edges, and then subtracts the probabilities.

Furthermore, we use various LBP settings as the baselines of
SBP. We use three baseline methods LBP-N, LBP-S, and LBP-
R whose strategies of determining the propagation strengths
are chosen heuristically. LBP-N is the simplest method which
assumes a uniform propagation strength by ignoring the at-
tributes. LBP-S works for Epinions-S; it assumes propagation
strengths of ✏ and ✏/2 for the positive and negative edges,
respectively. LBP-R works for the review networks; it models
a linear scaling of propagation strengths of the review edges.

2http://www.trustlet.org/downloaded epinions.html
3http://www.trustlet.org/extended epinions.html
4http://grouplens.org/datasets/movielens/1m

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9

 0 0.01 0.02 0.03 0.04 0.05 0.06 0.07 0.08 0.09 0.1

LBP-N LBP-R LBP-S RBP SPP SBP (proposed)

 0.45

 0.55

 0.65

 0.75

 0.85

10-4 10-3 10-2 10-1

A
cc

ur
ac

y
(A

U
C

)

ε (propagation strength) - 0.5

(a) MovieLens

 0.48

 0.51

 0.54

 0.57

 0.6

 0.63

 0.66

 0.69

10-4 10-3 10-2 10-1

ε (propagation strength) - 0.5

(b) Epinions-R

 0.72

 0.76

 0.8

 0.84

 0.88

 0.92

 0.96

10-4 10-3 10-2 10-1

ε (propagation strength) - 0.5

(c) Epinions-S
Fig. 4: AUCs of the LBP-based methods for varying values of the propagation strength. Each plot illustrates the result for each
dataset: (a) MovieLens, (b): Epinions-R, and (c) Epinions-S. The existing methods are shown to be sensitive to the propagation
strength. SBP, our proposed method denoted by the dashed blue lines, provides the highest accuracies for all the datasets.

In other words, it assumes the propagation strength of r(✏/5)
for the edges with rating r.

4) Experimental Process: Since the nodes in the networks
are not initially labeled, we pick seed nodes for each network
and then label other nodes based on each seed node. Given a
seed node u, we label the others as follows: for MovieLens
and Epinions-R, items that received ratings 5 from node u are
positive, and items that received ratings below 5 are negative
[9]. For Epinions-S, users that received the trust edges from
node u are positive, and users that received the distrust edges
are negative. Labels are not defined for the nodes which are not
connected to the seed node. We uniformly set node potential
� to 0.55 in all the LBP-based methods, except RBP which
uses its own node potential values, since they generally give
the best accuracies for the datasets. In other words, we set
�
i

(s
p

) and �
i

(s
n

) of node i to 0.55 and 0.45, respectively. In
SBP, we set the number ⌘ of recursive updates to 1 because
the results are shown to be insensitive to ⌘.

5) Evaluation: We use three kinds of evaluation metrics:
the area under the ROC curve (AUC), mean average precision
(MAP), and precision at k (P@k). They are computed from
the beliefs and visiting probabilities of the test nodes whose
labels are hidden. AUC is generated from a result of binary
classification by plotting the true positive rates against the false
positive rates at various threshold settings. MAP is the mean of
the average precision for each query, where a query represents
a seed user in our experiments. P@k is the ratio of true positive
nodes from the top-k ranked nodes. We set k to 20.

B. Accuracy (Q1)

We randomly pick k
1

seed nodes for each network, run all
the methods for each seed node, and average the accuracies.
Each seed node is picked from the nodes connected to at least
k
2

positive and k
2

negative nodes since the propagation does
not work well when the number of observed nodes is too small.
Then, we do the following for each seed node: we 1) randomly
sample k

2

nodes from each set of positive and negative nodes
to balance the number of nodes in both sets, 2) divide each set

of sampled nodes into training and test, 3) run the algorithms
using only the training sets, and 4) compute the classification
accuracies for the test sets. We set k

1

to 20 and k
2

to 80.
Figure 4 shows accuracies of the LBP-based methods for

varying values of the propagation strength. Values of ✏ equal
to or less than 0.5 are not included in the experiment since
they violate the assumption of guilt-by-association. As seen
in the figure, accuracies of the existing methods significantly
change depending on its value. On the other hand, SBP, our
proposed method which automatically learns the propagation
strengths, shows higher accuracies than the others even when
compared to their optimal performances. This is because SBP
learns different propagation strengths of the edges while the
others neglect the attributes or depend on the heuristically
determined strengths.

Figure 1 shows overall results comparing SBP to the other
methods in three evaluation metrics. LBP represents the best
baseline method for each dataset; LBP-N for MovieLens and
Epinions-R, and LBP-S for Epinions-S. SBP shows the highest
accuracies for all the datasets. Since performances of the
LBP-based methods depend on the values of the propagation
strength, we use the best ones found in the experiments of
Figure 4 for a fair comparison. Note that different groups of
competing methods are used for each network; SPP and M-
RWR are used only for Epinions-S, and RBP is used only for
Epinions-R and MovieLens. This is because they are designed
for specific types of networks, not general ones.

C. Learning Process (Q2)

Figures 5 and 6 show the iterative process of SBP learning
the optimal weight vector w in the experiment of MovieLens.
Figure 5 shows that the elements of w converge through the
iterations starting from the initial values of 0.001, although it
is not theoretically guaranteed. The kth element of w, denoted
by w

k

, represents the propagation strength of the edges with
rating k since the feature vectors in the network are one-hot
encoded. Figure 6 shows the values of the cost function E(w)
and AUC during the same iterations. The costs are minimized

-0.004

-0.002

 0

 0.002

 0.004

 0.006

 0.008

 0 10 20 30 40 50 60

V
al

ue
 o

f e
ac

h
el

em
en

t

Number of iterations

w1 w2 w3 w4 w5

Fig. 5: Changing values of the weight elements in w during
the iterations for MovieLens. The weights w

4

and w
5

for high
ratings increase above zero, while the others decrease below
zero. All the weights are initialized to 0.0001.

for both training and test sets as the weights are updated,
resulting in increased AUCs.

We note the following observations in Figure 5. First, the
elements show different patterns as the iteration proceeds; w

3

and w
4

rapidly increase at first, and then slowly decrease until
the convergence. It shows that the weights are updated toward
a local optimum. Second, the optimal weights for low ratings
(from 1 to 3) are sorted in the reverse order; w

1

converges to a
higher value than w

3

. This is because the ratings in the dataset
are biased toward high ratings; the average of all the ratings is
3.58, and the number of rating 3 is greater than the sum of the
numbers of ratings 1 and 2. Thus, rating 3 possibly represents
a lower evaluation than ratings 1 and 2 in this dataset, and the
result shows that SBP is capable of learning dataset-specific
relationships without any given prior knowledge.

D. Scalability (Q3)

We measure running time of SBP for various networks to
verify the linear scalability proved in Lemma 5. To generate
smaller networks with similar characteristics, we sample prin-
cipal submatrices from the adjacency matrix of each dataset.
For consistency, we randomly choose one seed node for each
dataset and use it for all the subgraphs, and fix the number of
weight updates (T

2

in Lemma 5) to 40. A laptop with 2.2GHz
Intel Core i7 processors is used to measure the running time.
Figure 7 shows the result; running time of SBP scales linearly
with regard to the number of edges for all the datasets. SBP
takes the longest in MovieLens since it is 15⇥ more dense than
the other networks; it takes more iterations for the messages
to converge (T

1

in Lemma 5).

V. RELATED WORKS

In this section, we review related works which are catego-
rized into three parts: Loopy Belief Propagation (LBP), real-
world applications of LBP, and node classification methods
based on Random Walk with Restart (RWR).

 130

 170

 210

 250

 290

 330

 370

 0 10 20 30 40 50 60
 0.69

 0.71

 0.73

 0.75

 0.77

 0.79

 0.81

V
al

ue
 o

f t
he

 c
os

t f
un

ct
io

n
E

(w
)

A
cc

ur
ac

y
(A

U
C

)

Number of iterations

TrainingCost
TrainingAUC

TestCost
TestAUC

Fig. 6: Changing values of the cost function E(w) and AUC
during the iterations for MovieLens. The cost keeps decreasing
as the weights are updated, resulting in increased AUCs for
both training and test sets.

1) Loopy Belief Propagation: Yedidia et al. showed that
LBP can be applied to various probabilistic graphical models
without loosing generality [10]. Gonzalez et al. and Elidan et
al. increased speed of the convergence in LBP by updating the
messages in an asynchronous way [22], [23]. Chechetka et al.
concentrated the computation of messages on more important
areas of a real-world graph for faster convergence [24]. Kang
et al. introduced a distributed LBP algorithm on MapReduce
[25], [15]. Koutra et al. showed that three guilt-by-association
methods including LBP, RWR, and Semi-supervised learning
lead to a similar matrix inversion problem [20].

2) Real-world applications of LBP: Pandit et al. and Chau
et al. applied LBP in detecting fraudulent users in online
auction networks [1], [4]. Akoglu et al. proposed an algorithm
that extends LBP to a signed network in order to spot fraud-
sters and fraudulent reviews from online review networks [26].
Jang et al. and Akoglu also applied LBP in signed networks
with different propagation strengths [13], [27]. Chau et al. and
Tamersoy et al. applied LBP to large scale malware detection
problems [2], [11]. McGLohon et al. applied LBP to graph
labeling and risk detection problems [3]. Ayday et al. and
Ha et al. applied LBP to recommendation problems [9], [28].
Felzenszwalb et al. and Yang et al. applied max-product LBP
to computer vision problems [12], [29]. Koutra et al. used a
variant of LBP to compute the node affinities of two graphs
required to measure the graph similarity [30].

3) RWR-based methods: Haveliwala proposed RWR, an al-
gorithm to measure relevance between nodes based on random
walks [19]. Backstrom and Leskovec proposed a supervised
algorithm based on RWR which determines transition proba-
bilities as a function of node and edge features [6]. Shahriari
and Jalili proposed M-RWR to solve sign prediction problems
[21]. Jung et al. proposed an RWR-based algorithm on signed
social networks [31].

VI. CONCLUSION

We propose Supervised Belief Propagation (SBP), a novel
and scalable graph inference algorithm for general attributed

 0

 20

 40

 60

 80

 100

 120

 140

300.0k 600.0k 900.0k 1.2M

R
un

ni
ng

 ti
m

e
(s

)

Number of edges

MovieLens
Epinions-R
Epinions-S

Fig. 7: Running time of SBP for the generated subgraphs. SBP
shows linear scalability with respect to the numbers of edges
for all three datasets we use in the experiments.

networks. SBP assigns different edge potentials based on the
attributes of each edge by learning the optimal weights for the
attributes. As a consequence, SBP generalizes existing meth-
ods with higher accuracies on various real-world networks.
Experimental results show that SBP brings up to 15.6% higher
AUC on node classification problem compared to the best ex-
isting methods. SBP enjoys linear scalability with the number
of edges for both time and space complexities. Future research
directions include extending SBP for distributed computing
environments and learning the node potentials as well.

ACKNOWLEDGMENTS

This work was supported by the National Research Foundation
of Korea(NRF) funded by the Ministry of Science, ICT and Future
Planning(NRF-2015K1A3A1A14021055). U Kang is the correspond-
ing author.

REFERENCES

[1] D. H. Chau, S. Pandit, and C. Faloutsos, “Detecting fraudulent person-
alities in networks of online auctioneers,” in Knowledge Discovery in
Databases: PKDD 2006. Springer, 2006, pp. 103–114.

[2] D. H. P. Chau, C. Nachenberg, J. Wilhelm, A. Wright, and C. Falout-
sos, “Polonium: Tera-Scale Graph Mining and Inference for Malware
Detection,” in Proceedings of the 2011 SIAM International Conference
on Data Mining. Philadelphia, PA: Society for Industrial and Applied
Mathematics, Dec. 2013, pp. 131–142.

[3] M. McGlohon, S. Bay, M. G. Anderle, D. M. Steier, and C. Faloutsos,
“Snare: a link analytic system for graph labeling and risk detection,”
in Proceedings of the 15th ACM SIGKDD international conference on
Knowledge discovery and data mining. ACM, 2009, pp. 1265–1274.

[4] S. Pandit, D. H. Chau, S. Wang, and C. Faloutsos, “Netprobe: a fast
and scalable system for fraud detection in online auction networks,” in
Proceedings of the 16th international conference on World Wide Web.
ACM, 2007, pp. 201–210.

[5] L. A. Adamic and E. Adar, “Friends and neighbors on the web,” Social
networks, vol. 25, no. 3, pp. 211–230, 2003.

[6] L. Backstrom and J. Leskovec, “Supervised random walks: predicting
and recommending links in social networks,” in Proceedings of the
fourth ACM international conference on Web search and data mining.
ACM, 2011, pp. 635–644.

[7] J. M. Kleinberg, “Authoritative sources in a hyperlinked environment,”
Journal of the ACM (JACM), vol. 46, no. 5, pp. 604–632, 1999.

[8] J. Leskovec, D. Huttenlocher, and J. Kleinberg, “Predicting positive and
negative links in online social networks,” in Proceedings of the 19th
international conference on World wide web, 2010.

[9] J. Ha, S.-H. Kwon, S.-W. Kim, C. Faloutsos, and S. Park, “Top-N
recommendation through belief propagation,” in Proceedings of the
21st ACM international conference on Information and knowledge
management. ACM, 2012, pp. 2343–2346.

[10] J. S. Yedidia, W. T. Freeman, and Y. Weiss, “Understanding belief
propagation and its generalizations,” Exploring artificial intelligence in
the new millennium, vol. 8, pp. 236–239, 2003.

[11] Tamersoy, Acar, Roundy, Kevin A, and Chau, Duen Horng, “Guilt
by association - large scale malware detection by mining file-relation
graphs.” KDD, pp. 1524–1533, 2014.

[12] P. F. Felzenszwalb and D. P. Huttenlocher, “Efficient belief propagation
for early vision,” International journal of computer vision, vol. 70, no. 1,
pp. 41–54, 2006.

[13] L. Akoglu, “Quantifying Political Polarity Based on Bipartite Opinion
Networks.” ICWSM, 2014.

[14] D. Koller and N. Friedman, Probabilistic graphical models: principles
and techniques. MIT press, 2009.

[15] U. Kang, D. H. Chau, and C. Faloutsos, “Mining large graphs: Algo-
rithms, inference, and discoveries,” in Data Engineering (ICDE), 2011
IEEE 27th International Conference on. IEEE, 2011, pp. 243–254.

[16] L. Yan, R. H. Dodier, M. Mozer, and R. H. Wolniewicz, “Optimizing
Classifier Performance via an Approximation to the Wilcoxon-Mann-
Whitney Statistic.” ICML, 2003.

[17] P. Massa and P. Avesani, “Trust-aware recommender systems,” in
Proceedings of the 2007 ACM conference on Recommender systems.
ACM, 2007, pp. 17–24.

[18] F. M. Harper and J. A. Konstan, “The movielens datasets: History and
context,” ACM Transactions on Interactive Intelligent Systems (TiiS),
vol. 5, no. 4, p. 19, 2016.

[19] T. H. Haveliwala, “Topic-sensitive pagerank,” in Proceedings of the 11th
international conference on World Wide Web. ACM, 2002, pp. 517–526.

[20] D. Koutra, T.-Y. Ke, U. Kang, D. H. Chau, H.-K. K. Pao, and C. Falout-
sos, “Unifying Guilt-by-Association Approaches - Theorems and Fast
Algorithms.” ECML/PKDD, 2011.

[21] M. Shahriari and M. Jalili, “Ranking nodes in signed social networks,”
Social Network Analysis and Mining, vol. 4, no. 1, pp. 1–12, 2014.

[22] J. Gonzalez, Y. Low, and C. Guestrin, “Residual splash for optimally
parallelizing belief propagation,” in International Conference on Artifi-
cial Intelligence and Statistics, 2009, pp. 177–184.

[23] G. Elidan, I. McGraw, and D. Koller, “Residual belief propagation:
Informed scheduling for asynchronous message passing,” arXiv preprint
arXiv:1206.6837, 2012.

[24] A. Chechetka and C. Guestrin, “Focused belief propagation for query-
specific inference.” in AISTATS, 2010, pp. 89–96.

[25] U. Kang, D. Chau, and C. Faloutsos, “Inference of beliefs on billion-
scale graphs,” The 2nd Workshop on Large-scale Data Mining: Theory
and Applications, 2010.

[26] L. Akoglu, R. Chandy, and C. Faloutsos, “Opinion fraud detection in
online reviews by network effects.” ICWSM, vol. 13, pp. 2–11, 2013.

[27] M.-H. Jang, C. Faloutsos, S.-W. Kim, U. Kang, and J. Ha, “Pin-trust:
Fast trust propagation exploiting positive, implicit, and negative informa-
tion,” in Proceedings of the 25th ACM International on Conference on
Information and Knowledge Management. ACM, 2016, pp. 629–638.

[28] E. Ayday and F. Fekri, “A belief propagation based recommender system
for online services,” in Proceedings of the fourth ACM conference on
Recommender systems. ACM, 2010, pp. 217–220.

[29] Q. Yang, L. Wang, and N. Ahuja, “A constant-space belief propagation
algorithm for stereo matching,” in Computer vision and pattern recogni-
tion (CVPR), 2010 IEEE Conference on. IEEE, 2010, pp. 1458–1465.

[30] D. Koutra, J. T. Vogelstein, and C. Faloutsos, “Deltacon: A principled
massive-graph similarity function,” in Proceedings of the 2013 SIAM
International Conference on Data Mining. SIAM, 2013, pp. 162–170.

[31] J. Jung, W. Jin, L. Sael, and U. Kang, “Personalized ranking in signed
networks using signed random walk with restart,” in Data Mining
(ICDM), 2016 IEEE 16th International Conference on. IEEE, 2016,
pp. 973–978.

