
Demonstration of BitGourmet:
Data Analysis via Deterministic Approximation

Saehan Jo
Cornell University
sj683@cornell.edu

Immanuel Trummer
Cornell University

itrummer@cornell.edu

ABSTRACT
We demonstrate BitGourmet, a novel data analysis system
that supports deterministic approximate query processing
(DAQ). The system executes aggregation queries and pro-
duces deterministic bounds that are guaranteed to contain
the true value. The system allows users to set a precision
constraint on query results. Given a user-defined target preci-
sion, we operate on a carefully selected data subset to satisfy
the precision constraint. More precisely, we divide each col-
umn vertically, bit-by-bit. Our specialized query processing
engine evaluates queries on subsets of these bit vectors. This
involves a scenario-specific query optimizer which relies on
quality and cost models to decide the optimal bit selection
and execution plan. In our demonstration, we show that
DAQ realizes an interesting trade-off between result quality
and execution time, making data analysis more interactive.
We also offer manual control over the query plan, i.e., the
bit selection and the execution plan, so that users can gain
more insights into our system and DAQ in general.
ACM Reference Format:
Saehan Jo and Immanuel Trummer. 2020. Demonstration of Bit-
Gourmet: Data Analysis via Deterministic Approximation. In Pro-
ceedings of the 2020 ACM SIGMOD International Conference on Man-
agement of Data (SIGMOD’20), June 14–19, 2020, Portland, OR, USA.
ACM, New York, NY, USA, 4 pages. https://doi.org/10.1145/3318464.
3384709

1 INTRODUCTION
Approximate Query Processing (AQP) has received an abun-
dant amount of attention due to the growing need to process
very large data sets efficiently [1–5, 8–13, 15–17]. The goal of
AQP is to produce approximate results for aggregation queries

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are not
made or distributed for profit or commercial advantage and that copies bear
this notice and the full citation on the first page. Copyrights for components
of this work owned by others than ACMmust be honored. Abstracting with
credit is permitted. To copy otherwise, or republish, to post on servers or to
redistribute to lists, requires prior specific permission and/or a fee. Request
permissions from permissions@acm.org.
SIGMOD’20, June 14–19, 2020, Portland, OR, USA
© 2020 Association for Computing Machinery.
ACM ISBN 978-1-4503-6735-6/20/06. . . $15.00
https://doi.org/10.1145/3318464.3384709

and, by doing so, trade off little precision loss for faster re-
sponse time. However, despite the ongoing research work
in AQP, its adoption in industry has been limited [3]. Most
prior work uses sampling to produce confidence bounds, con-
taining the true value only with a certain probability. This
uncertainty can be unsatisfactory for users in real-world ap-
plications. Another problem associated with sampling-based
methods is their inherent limitations in supporting aggrega-
tion functions that are sensitive to outliers (e.g., maxima and
minima).
A recent work [14] proposes Deterministic Approximate

Query Processing (DAQ) as an alternative to the probabilis-
tic approach. DAQ produces deterministic bounds, as op-
posed to confidence bounds, that are guaranteed to contain
the exact value. With its stronger guarantees on the error
bounds, DAQ can be a more reliable and valid choice in
many real-world scenarios. In this presentation, we provide
an interactive demonstration of BitGourmet [7], a novel data
analysis system that supports deterministic approximation
for complex queries. The aforementioned paper focuses on
simple queries involving single tables, single aggregates, sin-
gle predicates, and no grouping. On the contrary, our system
supports complex queries, as they appear in standard bench-
marks, involving grouping, multiple aggregates, multiple
predicates, and multiple tables.

Given an aggregation query and a user-defined error con-
straint, BitGourmet produces deterministic bounds that meet
the target precision (and contain the true value). At the heart
of BitGourmet is a specialized query optimizer that decides
which subset of data to read and process. Using a cost-based
error model, we carefully select data subsets that would
produce approximate results satisfying the target precision.
However, unlike sampling-based methods that consider row
subsets, we divide each column vertically at bit-level granu-
larity. This allows us to access partial information for all rows
instead of complete information for a few rows, an essential
feature for our system to produce deterministic bounds. The
second goal of our query optimizer is to select execution
plans on the bit columns that minimize processing cost. Bit-
Gourmet uses scenario-specific operators that operate on
bit vectors. Also, we support multiple representations of in-
termediate results (e.g. decompressed and compressed bit

Demonstrations  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2801

https://doi.org/10.1145/3318464.3384709
https://doi.org/10.1145/3318464.3384709
https://doi.org/10.1145/3318464.3384709
http://crossmark.crossref.org/dialog/?doi=10.1145%2F3318464.3384709&domain=pdf&date_stamp=2020-05-31


Figure 1: Overview of the BitGourmet system.

vectors or the standard row-wise representation) with spe-
cialized operator implementations. Our system may choose
to transform the intermediate result representation during
execution if that is likely to accelerate future operations. Sim-
ilar to the error model, we rely on a cost model to estimate
processing times of different execution plans. Based on both
models, the BitGourmet optimizer chooses an optimal pro-
cessing plan. The optimal plan minimizes processing costs
while producing results that meet the user-defined error con-
straints. By reading and processing less bits, BitGourmet
trades little precision loss for significant performance gains
as shown in our experiments [7].
Our system comes with a graphical user interface that

visualizes the deterministic bounds for end-users. In our
demonstration, we also provide additional information re-
garding the internal decision making process. That is, we
show alternative query plans for DAQ (i.e., bit selections and
execution plans) and their estimated errors and processing
costs predicted by our query optimizer. Furthermore, users
will have the freedom to manually choose the bit subset to
operate on and see how it affects the precision of generated
bounds.
BitGourmet realizes an AQP engine that produces deter-

ministic bounds based on bit subsets and, in exchange, de-
livers a performance improvement over exact processing. In
Section 2, we give an overview of the BitGourmet system. In
Section 3, we describe our plan for the demonstration that
allows users to explore various aspects of our system.

2 SYSTEM OVERVIEW
Figure 1 shows an overview of our system. We process SQL
queries with aggregates. As output, we produce deterministic
bounds on each aggregate (i.e., lower and upper bounds
that are guaranteed to contain the true value). We trade
precision against processing time by reading and processing
only carefully selected bits from database columns. We store
our database as a set of bit vectors. This allows us to access

Table 1: Predicate evaluation with ternary states.

C Possible Values C > 5

1?0? 8, 9, 12, 13 ✓

0?1? 2, 3, 6, 7 ?

1?1? 10, 11, 14, 15 ✓

0?0? 0, 1, 4, 5 ×

specific bits of specific columns separately. In the following
subsections, we first explain the bit-wise storage scheme and
then the execution engine of BitGourmet. Next, we present
our cost-based query optimizer. The graphical user interface
is described along with our demonstration plan in Section 3.

2.1 Data Representation
BitGourmet uses a bit-wise scheme to store data and to rep-
resent intermediate results. It allows us to access each bit
vector individually and to reason about the effect of a specific
bit vector on the query result.

Raw Data Storage. BitGourmet divides and stores raw
data vertically at bit-level to provide individual access to a
specific bit vector at need. This enables our system to load
a subset of bit vectors, even from the same column, to the
memory buffer with minimum overhead (compared to row-
wise or column-wise storage). As a consequence, we get
partial information about the attribute values for each row.
For instance, in Table 1, we read the first and the third bit
vectors for an integer column C (and do not read the second
and the fourth bits). Then, by assuming either zero or one for
the unknown bits, we can determine the set of possible tuple
values from the incomplete information. The table shows
how to evaluate an inequality predicate based on possible
values (the example will be explained later in more detail).

Intermediate Result Representation. A particularity
of our bit-wise processing scheme is that we assign each

Demonstrations  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2802



tuple in intermediate results to a ternary state: 1) it is certain
that the tuple satisfies all applicable predicates, 2) it is possible
that the tuple satisfies all predicates, and 3) it is certain that
the tuple does not satisfy some predicate. The first and the
third cases are the tuple states that we usually see in exact
processing engines. For BitGourmet, it we must also consider
the case that we do not have enough information to safely
include or exclude a tuple. Here, we do not consider null
values, which we treat separately. We elaborate more using
the example in Table 1. The inequality predicate “C > 5”
evaluates to a ternary state vector where each tuple state is
determined by the set of possible values.

2.2 Execution Engine
BitGourmet features specialized operators that process bit
vectors (and rows if needed) and produce deterministic bounds.
Given the optimal bit selection and execution plan, our exe-
cution engine loads the corresponding bit vectors from disk,
transforms data representations as requested, and aggregates
data approximately but in a deterministic manner.

Data Transformation. We provide operators that trans-
forms data from one representation to another. Currently,
we support three different representations for intermedi-
ate results: compressed or decompressed bit vectors and the
standard columnar representation. These operators naturally
entail a processing cost, and thus, they are only inserted into
an execution plan if the estimated benefit we gain from the
remaining operations outweighs their overhead.

Data Loading. BitGourmet can load raw data from disk
at bit granularity. We first check whether the required bit
vector resides in the memory buffer. If not, we load the bit
vector from disk and evict other bit vectors as needed. An ad-
vantage of storing bit subsets in memory (instead of storing
the entire column data) is that we can partition the available
memory space over more columns, keeping less (and the
most essential) data for each column. This contributes to
a higher cache hit ratio across queries, compared to exact
processing, especially when the hot set for DAQ fits into
main memory.

Aggregation. BitGourmet’s aggregation operators have
multiple implementations, tailored to different input rep-
resentations. Bit-wise aggregation directly works with bit
vectors. For instance, consider the sum aggregation. We first
count the number of ones in each bit vector and multiply
each count with the corresponding weight (e.g. for integer
columns, 2i where i is the bit position of a bit vector). Row-
wise aggregations are similar in spirit to the standard imple-
mentation in exact processing engines. To produce lower and
upper bounds, we consider the range of all possible values
in the aggregation column for each tuple.

Figure 2: Screenshot from the BitGourmet interface.

2.3 Query Optimizer
BitGourmet’s query optimizer chooses the optimal bit se-
lection and execution plan for a given aggregation query
and a user-defined target precision. It relies on precision and
processing cost models to estimate the quality of a query
plan (i.e., its expected precision and execution cost). The es-
timates computed by these two models are internally based
on cardinality estimates provided by a cardinality model. To
enable this kind of scenario-specific optimization for bit se-
lections, we utilize bit-level statistics as well as the standard
data catalog. A query predictor supports the optimizer in
adjusting the execution plan (including plans for proactive
buffer management), whenever possible, to maximize the
expected overall performance for current and future queries.

Error Model. For a given bit selection, the error model
estimates the expected result quality for the query. Its core
functionality is to reason about how the uncertainty asso-
ciated with the tuple values affects the lower and upper
bounds (or their relative distance) in a principled way. For
each aggregation function supported by BitGourmet (i.e.,
sum, average, count, minimum, and maximum), we derive a
closed-form formula that computes an estimated error for
any bit selection based on bit-level statistics.

Processing Cost Model. The processing cost depends
on both, the bit selection and the execution plan. We model
the processing cost of a BitGourmet operator as sum over
the atomic costs of bit-level operations. The costs of atomic
operations on bit vectors (e.g., AND, OR, NOT, GetBitAt, and
NrOnes) are calculated based on the type of operation, the
input representation (e.g., decompressed versus compressed),
and the sparsity of bit vectors.

Demonstrations  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2803



Query Predictor. The query predictor relies on a log of
past queries to anticipate upcoming queries. Based on these
predictions, the query optimizer might prefer an execution
plan that (while taking slightly longer than the locally op-
timal plan for the current query) generates bit vectors that
can be reused when processing likely future queries.

3 DEMONSTRATION
We demonstrate the BitGourmet system and show how it
facilitates data analysis on real-world data sets. As a baseline,
we provide the option to change the underlying database to
an exact processing system, MonetDB [6]. Also, users can
manually select which bit selection to use and examine its
effect on result quality and processing efficiency.

3.1 Data Set
We use two real-world data sets during our demonstration.
One data set is about the number of crimes in London per
geographic region and per crime type1. The other data set
describes all childbirths in the United States between years
1969 and 20082. It provides information about mothers, fa-
thers, and babies, for instance, their age, race, residence state,
smoking habit, drinking habit, and other health-related sta-
tistics. An experiment demonstrates that we get an average
speed up of 28.5× for analytical workloads on this data set,
compared to an exact processing system [7] (we refer to our
previous paper for the experimental setup).

3.2 Graphical User Interface
Figure 2 presents a screenshot of the BitGourmet interface.
The plot on the right shows the deterministic bounds for the
aggregation query “SELECT Avg(mother_age) GROUP BY
father_age” with error constraint as 10%. Users can choose
the error constraint from 0% to 100% (a lower value leads to a
higher result quality) using a slider in the top-left corner. On
the left, users can specify the aggregation query they want
to execute by selecting the aggregation function, aggregated
column, group by columns, and predicates. When users press
the “Execute Query” button, the system processes the query
and presents the approximate result. On the right side of
the figure, each aggregate is shown by a bar which indicates
the lower and upper bounds. Note that these bounds are
deterministic, and thus, the true value is always within the
two bounds. The log displayed on the left provides additional
information regarding the current query execution.

3.3 System Performance Analysis
We provide users with access to the internals of BitGourmet.
The query optimization process is exposed by showing users
1https://www.kaggle.com/LondonDataStore/london-crime
2https://www.kaggle.com/bigquery/samples

possible bit selections and their estimated errors. Similarly,
our system also displays different execution plans and their
estimated processing costs. For interactive demonstration,
users will be able to choose for themselves how many bit
vectors to read per column and from which bit positions.
With this control, users can explore how the bit selection
affects both, the result quality and the execution time.

REFERENCES
[1] Swarup Acharya, Phillip B. Gibbons, Viswanath Poosala, and Sridhar

Ramaswamy. 1999. The Aqua Approximate Query Answering System.
In SIGMOD. 574–576.

[2] Sameer Agarwal, Barzan Mozafari, Aurojit Panda, Henry Milner,
Samuel Madden, and Ion Stoica. 2013. BlinkDB: queries with bounded
errors and bounded response times on very large data. In EuroSys.
29–42.

[3] Surajit Chaudhuri, Bolin Ding, and Srikanth Kandula. 2017. Approxi-
mate Query Processing: No Silver Bullet. In SIGMOD. 511–519.

[4] Alfredo Cuzzocrea. 2005. Providing Probabilistically-bounded Approx-
imate Answers to Non-holistic Aggregate Range Queries in OLAP. In
DOLAP. 97–106.

[5] Joseph M. Hellerstein, Peter J. Haas, and Helen J. Wang. 1997. Online
Aggregation. In SIGMOD. 171–182.

[6] Stratos Idreos, Fabian Groffen, Niels Nes, Stefan Manegold, K. Sjoerd
Mullender, and Martin L. Kersten. 2012. MonetDB: Two Decades of
Research in Column-oriented Database Architectures. IEEE Data Eng.
Bull. 35, 1 (2012), 40–45.

[7] Saehan Jo and Immanuel Trummer. 2020. BitGourmet: Deterministic
Approximation via Optimized Bit Selection. In CIDR.

[8] Shantanu Joshi and Christopher Jermaine. 2008. Materialized Sample
Views for Database Approximation. TKDE 20, 3 (2008), 337–351.

[9] Srikanth Kandula, Anil Shanbhag, Aleksandar Vitorovic, Matthaios
Olma, Robert Grandl, Surajit Chaudhuri, and Bolin Ding. 2016. Quickr:
Lazily Approximating Complex AdHoc Queries in BigData Clusters.
In SIGMOD. 631–646.

[10] Feifei Li, Bin Wu, Ke Yi, and Zhuoyue Zhao. 2016. Wander Join: Online
Aggregation via Random Walks. In SIGMOD. 615–629.

[11] Supriya Nirkhiwale, Alin Dobra, and Christopher M. Jermaine. 2013.
A Sampling Algebra for Aggregate Estimation. PVLDB 6, 14 (2013),
1798–1809.

[12] Frank Olken and Doron Rotem. 1995. Random sampling from
databases: a survey. Statistics and Computing 5, 1 (1995), 25–42.

[13] Jinglin Peng, Dongxiang Zhang, Jiannan Wang, and Jian Pei. 2018.
AQP++: Connecting Approximate Query Processing With Aggregate
Precomputation for Interactive Analytics. In SIGMOD. 1477–1492.

[14] Navneet Potti and Jignesh M. Patel. 2015. DAQ: A New Paradigm for
Approximate Query Processing. PVLDB 8, 9 (2015), 898–909.

[15] Chengjie Qin and Florin Rusu. 2014. PF-OLA: A High-performance
Framework for Parallel Online Aggregation. Distrib. Parallel Databases
32, 3 (2014), 337–375.

[16] Amit Rudra, Raj P. Gopalan, and Narasimaha Achuthan. 2012. An
Efficient Sampling Scheme for Approximate Processing of Decision
Support Queries. In ICEIS. 16–26.

[17] BarzanMozafari Yongjoo Park, Ahmad Shahab Tajik, Michael Cafarella.
2017. Database Learning: Toward a Database that Becomes Smarter
Every Time. In SIGMOD. 587–602.

Demonstrations  SIGMOD ’20, June 14–19, 2020, Portland, OR, USA

2804


	Abstract
	1 Introduction
	2 System Overview
	2.1 Data Representation
	2.2 Execution Engine
	2.3 Query Optimizer

	3 Demonstration
	3.1 Data Set
	3.2 Graphical User Interface
	3.3 System Performance Analysis

	References



